whisper-base-sr / README.md
Sagicc's picture
Update README.md
64d4fd3 verified
metadata
language:
  - sr
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
  - google/fleurs
  - Sagicc/audio-lmb-ds
  - classla/ParlaSpeech-RS
metrics:
  - wer
model-index:
  - name: Whisper Base Sr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_16_0
          config: sr
          split: test
          args: sr
        metrics:
          - name: Wer
            type: wer
            value: 0.27887672200635816

Whisper Base Sr

This model is a fine-tuned version of openai/whisper-base. It achieves the following results on the evaluation set:

  • Loss: 0.3129
  • Wer Ortho: 0.3801
  • Wer: 0.2789

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.4839 0.03 500 0.4684 0.5407 0.4170
0.4084 0.05 1000 0.3948 0.4578 0.3559
0.3873 0.08 1500 0.3690 0.4276 0.3260
0.3562 0.11 2000 0.3450 0.4129 0.3117
0.3233 0.13 2500 0.3293 0.3935 0.2912
0.313 0.16 3000 0.3232 0.3887 0.2861
0.3062 0.19 3500 0.3158 0.3866 0.2851
0.3154 0.22 4000 0.3129 0.3801 0.2789

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.1