|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-UsingAlgoDataset_427Images |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-UsingAlgoDataset_427Images |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0022 |
|
- Precision: 0.9892 |
|
- Recall: 0.9880 |
|
- F1: 0.9886 |
|
- Accuracy: 0.9997 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.62 | 50 | 0.0349 | 0.7521 | 0.6300 | 0.6857 | 0.9926 | |
|
| No log | 1.25 | 100 | 0.0080 | 0.9538 | 0.9405 | 0.9471 | 0.9985 | |
|
| No log | 1.88 | 150 | 0.0044 | 0.9750 | 0.9723 | 0.9736 | 0.9992 | |
|
| No log | 2.5 | 200 | 0.0032 | 0.9834 | 0.9827 | 0.9831 | 0.9995 | |
|
| No log | 3.12 | 250 | 0.0037 | 0.9710 | 0.9784 | 0.9747 | 0.9992 | |
|
| No log | 3.75 | 300 | 0.0026 | 0.9861 | 0.9852 | 0.9857 | 0.9996 | |
|
| No log | 4.38 | 350 | 0.0023 | 0.9880 | 0.9871 | 0.9875 | 0.9996 | |
|
| No log | 5.0 | 400 | 0.0022 | 0.9883 | 0.9871 | 0.9877 | 0.9997 | |
|
| No log | 5.62 | 450 | 0.0022 | 0.9892 | 0.9880 | 0.9886 | 0.9997 | |
|
| 0.029 | 6.25 | 500 | 0.0022 | 0.9892 | 0.9880 | 0.9886 | 0.9997 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|