Keypoint Detection
yolov8n_pose / README.md
FBAGSTM's picture
Update README.md
4a00402 verified
---
license: other
license_name: sla0044
license_link: >-
https://github.com/STMicroelectronics/stm32aimodelzoo/pose_estimation/yolov8n_pose/LICENSE.md
pipeline_tag: keypoint-detection
---
# Yolov8n_pose quantized
## **Use case** : `Pose estimation`
# Model description
Yolov8n_pose is a lightweight and efficient model designed for multi pose estimation tasks. It is part of the YOLO (You Only Look Once) family of models, known for their real-time object detection capabilities. The "n" in Yolov8n_pose indicates that it is a nano version, optimized for speed and resource efficiency, making it suitable for deployment on devices with limited computational power, such as mobile devices and embedded systems.
Yolov8n_pose is implemented in Pytorch by Ultralytics and is quantized in int8 format using tensorflow lite converter.
## Network information
| Network information | Value |
|-------------------------|-----------------|
| Framework | TensorFlow Lite |
| Quantization | int8 |
| Provenance | https://docs.ultralytics.com/tasks/pose/ |
## Networks inputs / outputs
With an image resolution of NxM with K keypoints to detect :
| Input Shape | Description |
| ----- | ----------- |
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| (1, Kx3, F) | FLOAT values Where F = (N/8)^2 + (N/16)^2 + (N/32)^2 is the 3 concatenated feature maps and K is the number of keypoints|
## Recommended Platforms
| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [] | [] |
| STM32MP1 | [] | [] |
| STM32MP2 | [x] | [x] |
| STM32N6 | [x] | [x] |
# Performances
## Metrics
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 477.56 | 0.0 | 3247.89 | 10.0.0 | 2.0.0 |
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1135 | 0.0 | 3265.22 | 10.0.0 | 2.0.0 |
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6 | 2264.27 | 0.0 | 3263.72 | 10.0.0 | 2.0.0 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 24.46 | 40.89 | 10.0.0 | 2.0.0 |
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 35.79 | 27.95 | 10.0.0 | 2.0.0 |
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 51.35 | 19.48 | 10.0.0 | 2.0.0 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|-----------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 102.8 ms | 11.70 | 88.30 |0 | v5.0.0 | OpenVX |
| [YOLOv8n pose per tensor](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pt_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.57 ms | 86.79 | 13.21 |0 | v5.0.0 | OpenVX |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
### AP0.5 on COCO Person dataset
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | AP0.5* |
|-------|--------|------------|----------------|
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_192_quant_pc_uf_pose_coco-st.tflite) | Int8 | 192x192x3 | 41.05 % |
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pc_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | 51.12 % |
| [YOLOv8n pose per tensor](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_256_quant_pt_uf_pose_coco-st.tflite) | Int8 | 256x256x3 | 48.43 % |
| [YOLOv8n pose per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/pose_estimation/yolov8n_320_quant_pc_uf_pose_coco-st.tflite) | Int8 | 320x320x3 | 55.55 % |
\* NMS_THRESH = 0.1, SCORE_THRESH = 0.001
## Integration in a simple example and other services support:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services).
The models are stored in the Ultralytics repository. You can find them at the following link: [Ultralytics YOLOv8-STEdgeAI Models](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/).
Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tasks/pose/#train) to retrain the models.
# References
<a id="1">[1]</a>
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{'{a} }r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}