metadata
base_model: SQAI/bge-embedding-model
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1865
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: threshold.highLuxThreshold
sentences:
- >-
"Can you provide the timestamp of the last update to the threshold
settings, and detail any faults in the lux module related to light level
sensing and control for the streetlight on this specific street name? I
also want to know the longitude of the streetlight. And also, can you
tell me what type of dimming schedule is applied to the streetlight, the
type of port used for its dimming controls, and the total energy it has
consumed, recorded in kilowatt-hours. Lastly, could you also provide the
timestamp of the recorded streetlighting error, and confirm the status
of the relay responsible for turning this streetlight on and off, as I
am suspecting it might be sticking?"
- >-
"Can you provide me with the unique streetlight identifier, upper lux
level for managing light intensity, a brief description, and the delta
or height of the grid area occupied by a group of streetlights? Also,
can you note the AC voltage supply for these streetlights, any issues
with communication related to their lux sensors, and the count of how
many times each streetlight has been switched on? Please ensure that the
data is constrained to just those that can be determined with the unique
streetlight identifier I provided."
- >-
"What was the last recorded data or action timestamp of the streetlight
located at the specific longitude, and in which time zone is it
situated? Could you also provide information on its default dimming
level and the maximum power usage threshold above which indicates
potential faults? Are there any identified faults in the lux module
impacting light level sensing and control? Additionally, what are the
minimum longitude and delta or height for the grid area occupied by this
group of streetlights and could you specify the network time received
from the central control for synchronization purposes?"
- source_sentence: asset.geoZone
sentences:
- >-
"Could you check the status of the streetlight with the unique
identifier, located on the named street, specifically looking at any
records of complete loss of power which could indicate supply issues or
damage? Also, could you provide details on the instances where the
voltage under load is lower than expected, as well as instances of lower
than expected power consumption, which could signal potential electrical
or hardware issues? I'm also interested in understanding if there are
any faults in our link control mechanism managing multiple streetlights.
Additionally, could you tell me the current drawn by this specific
streetlight when it was lower than expected and the current dimming
level of the streetlight in operation? Lastly, could you specify the
maximum safe voltage under load conditions for this light and verify
whether its broadcast subscription used for receiving control signals is
doing fine?"
- >-
"Can you provide me with the details regarding a specific streetlight on
Main Street, particularly the minimum current level below which it's
considered abnormal, its power factor indicating efficient power usage,
total operational hours logged, any incidences where power consumption
was higher than expected possibly due to potential faults, its geoZone,
X-coordinate in the grid layout, minimum operational voltage under load
conditions, minimum load current that indicates suboptimal performance,
and the timestamp of the last update made to the threshold settings?"
- >-
"What is the width and height of the grid area occupied by the group of
streetlights, type of port used for dimming controls, power consumption
levels, and what is the safety of the current exceeded on the
streetlight? Besides, could you explain the high power factor indicating
potential overloads or capacitive imbalances?"
- source_sentence: errors.deviceId
sentences:
- >-
"Can you show me a report of all the streetlights with a unique
identifier, which have an internal temperature indicating abnormal
operating conditions such as voltage supplied being below the safe
level, and operating temperature below expected limit possibly due to
environmental conditions? Can this report also include instances of
faults in link control mechanism managing multiple streetlights and
cases of open circuit in the relay preventing normal operation?"
- >-
"Could you provide information about the streetlight on 'specific street
name', specifically concerning its current drawn which appears to be
lower than expected, potential issues in the link control mechanism that
manages multiple streetlights, whether its operating temperature exceeds
safe limits thus risking damage, and if its power output is lower than
expected? Also, could you let me know at what interval this streetlight
sends data reports and inform about any other issues detected,
particularly when the current is below the expected range?"
- >-
"What is the minimum power usage level below which it is considered
abnormal for our 'Main Street Lamps' group of streetlights, which are
described as a series of LED lamps installed along the main town
stretch, and what could be the reasons if the power consumption is lower
than expected, possibly due to hardware issues? Also, could you give me
the description on what means when intermittent flashing of the
streetlight occurs, indicating instability and tell me about the
strength of the wireless signal received by the streetlight's
communication module. Could you confirm what control mode switch
identifier we should use for changing streetlight settings and the
highest power factor that is considered optimal for streetlight
efficiency? Additionally, we discovered issues with group management of
streetlights via our central control system, and we would like to know
the time taken for the streetlight to activate or light up from the
command."
- source_sentence: threshold.lowLoadVoltage
sentences:
- >
"Could you please show me the latest data recorded or action performed
by the streetlight, specifically highlighting the control mode switch
identifier used for changing its settings, the type of DALI dimming
protocol it uses, and the type of port used for its dimming controls?
Furthermore, has there been any intermittent flashing indicating
instability? Also, could you provide data on its minimum operational
voltage under load conditions, and let me know if its power consumption
is lower than expected due to potential hardware issues?"
- >-
"Can the operator managing the streetlight provide the timestamp of the
latest data recorded or action performed by the streetlight, details on
the minimum operational voltage under load conditions, the current
issues with the driver that powers and controls the streetlight, why the
power output is lower than expected for the streetlight, and what is the
maximum latitude of the geographic area covered by this group of
streetlights?"
- >-
"Can you provide a report that shows all the streetlights in a grid
layout with Y-coordinate information, indicating whether their control
mode setting is on automated or manual, their minimum current level, and
instances of communication issues between the streetlight's driver and
the control system, as well as instances when the operating temperature
fell below expected limits, possibly due to environmental conditions?"
- source_sentence: errors.controllerFault.lowLoadCurrent
sentences:
- >-
"Can you provide me with the current status of the streetlight on
'street name', specifically in relation to its voltage under load,
whether it's lower than expected and how that might be indicating
potential electrical issues? Could you also give me insight into the
current drawn by the streetlight, whether or not the relay is currently
on or off, and if there are any faults in the lux module that may affect
light level sensing and control? Moreover, could you tell me the type of
dimming schedule applied, the ambient light level detected in lux, the
total energy consumed so far recorded in kilowatt-hours, and the lower
voltage threshold for this streetlight's efficient operation?"
- >-
"Can you provide a detailed report for the streetlight on [Name of the
street for the streetlight in error]? The report should include the
timestamp of the last recorded error, synchronization time received from
the central control, the dimming schedule type we're currently using,
and both minimum operational and maximum safe voltage under load
conditions. Also, indicate the time of the last action was recorded and
if there are any reported faults in the metering components affecting
data reporting. Can you also specify the port type used for dimming
controls and whether the power consumption has been unusually low due to
potential hardware issues?"
- >-
"Can you show me the current status of the relay in the streetlights
located at the X-coordinate grid, highlighting any faults in the lux
module that might be affecting light level sensing and control? Also,
could you provide information on the current dimming level of these
streetlights in operation, the type of dimming schedule applied, and
whether the voltage is within the upper limit considered safe and
efficient for their operation?"
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.014423076923076924
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0014423076923076926
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.014423076923076924
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.004284253930989665
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.001549145299145299
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.005857063109582476
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.014423076923076924
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0014423076923076926
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.014423076923076924
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.004284253930989665
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.001549145299145299
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.005857063109582476
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.014423076923076924
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0014423076923076926
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.014423076923076924
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0043536523979211435
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.0016159188034188035
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.005708010488423065
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.009615384615384616
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0009615384615384616
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.009615384615384616
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0030498236971024735
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.001221001221001221
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.005185692544152747
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.019230769230769232
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0019230769230769232
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.019230769230769232
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.005956216500485246
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.0023027319902319903
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.0051874402718147935
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from SQAI/bge-embedding-model. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: SQAI/bge-embedding-model
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("SQAI/bge-embedding-model2")
sentences = [
'errors.controllerFault.lowLoadCurrent',
'"Can you provide me with the current status of the streetlight on \'street name\', specifically in relation to its voltage under load, whether it\'s lower than expected and how that might be indicating potential electrical issues? Could you also give me insight into the current drawn by the streetlight, whether or not the relay is currently on or off, and if there are any faults in the lux module that may affect light level sensing and control? Moreover, could you tell me the type of dimming schedule applied, the ambient light level detected in lux, the total energy consumed so far recorded in kilowatt-hours, and the lower voltage threshold for this streetlight\'s efficient operation?"',
'"Can you show me the current status of the relay in the streetlights located at the X-coordinate grid, highlighting any faults in the lux module that might be affecting light level sensing and control? Also, could you provide information on the current dimming level of these streetlights in operation, the type of dimming schedule applied, and whether the voltage is within the upper limit considered safe and efficient for their operation?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0144 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.0014 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0144 |
cosine_ndcg@10 |
0.0043 |
cosine_mrr@10 |
0.0015 |
cosine_map@100 |
0.0059 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0144 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.0014 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0144 |
cosine_ndcg@10 |
0.0043 |
cosine_mrr@10 |
0.0015 |
cosine_map@100 |
0.0059 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0144 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.0014 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0144 |
cosine_ndcg@10 |
0.0044 |
cosine_mrr@10 |
0.0016 |
cosine_map@100 |
0.0057 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0096 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.001 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0096 |
cosine_ndcg@10 |
0.003 |
cosine_mrr@10 |
0.0012 |
cosine_map@100 |
0.0052 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0 |
cosine_accuracy@5 |
0.0 |
cosine_accuracy@10 |
0.0192 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0 |
cosine_precision@5 |
0.0 |
cosine_precision@10 |
0.0019 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0 |
cosine_recall@5 |
0.0 |
cosine_recall@10 |
0.0192 |
cosine_ndcg@10 |
0.006 |
cosine_mrr@10 |
0.0023 |
cosine_map@100 |
0.0052 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,865 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 5 tokens
- mean: 7.68 tokens
- max: 14 tokens
|
- min: 17 tokens
- mean: 89.79 tokens
- max: 187 tokens
|
- Samples:
positive |
anchor |
threshold.lowLoadVoltage |
"What is the maximum current level above which it is considered unsafe for a specific streetlight in my area, what is the minimum longitude of the geographic area this streetlight covers, is this streetlight's control mode automated or manually controlled, also, can you provide the delta or width of the grid area occupied by this group of streetlights, what is the level of AC voltage supply to this streetlight, what's the lower voltage threshold below which this streetlight may not operate efficiently, how many times has this streetlight been switched on, what is the minimum operational voltage under load conditions, and finally, what is the latitude of this streetlight?" |
asset.id |
"Could you please tell me the scheduled dimming settings for the string stored streetlights, troubleshoot why these streetlights remain on during daylight hours, and confirm if this could be due to sensor faults? Also, I'd like to know the identifier for the parent group to which this group of streetlights belongs, and the IMEI number of the streetlight device." |
errors.controllerFault.highPower |
"Can you provide an analysis of the efficiency of power usage by examining the power factor of the streetlights, especially in areas of the grid with high Y-coordinates, highlight instances where power consumption is significantly higher than expected which may indicate faults, identify situations where voltage under load is above safe levels, and assess if there are any problems with our central control system's ability to manage streetlight groups?" |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Unnamed Dataset
- Size: 208 evaluation samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 5 tokens
- mean: 7.55 tokens
- max: 14 tokens
|
- min: 19 tokens
- mean: 90.69 tokens
- max: 187 tokens
|
- Samples:
positive |
anchor |
log.controlModeSwitch |
"Can you provide the control mode switch identifier used for changing the default dimming level set for a specific group of streetlights, identified by their unique identifier, considering the time taken for the streetlight to activate or light up from the command, and possibly troubleshoot why the power consumption is lower than expected which could be due to hardware issues, quite possibly due to the relay responsible for turning the streetlight on and off sticking?" |
errors.controllerFault.luxModuleFault |
"Can you provide the timestamp of the last update to the threshold settings, and detail any faults in the lux module related to light level sensing and control for the streetlight on this specific street name? I also want to know the longitude of the streetlight. And also, can you tell me what type of dimming schedule is applied to the streetlight, the type of port used for its dimming controls, and the total energy it has consumed, recorded in kilowatt-hours. Lastly, could you also provide the timestamp of the recorded streetlighting error, and confirm the status of the relay responsible for turning this streetlight on and off, as I am suspecting it might be sticking?" |
threshold.lowLoadCurrent |
"What is the maximum safe voltage under load conditions for the city's streetlights, and do we possess the necessary rights to link these streetlights for synchronized control? Could you provide me with the timestamp of the latest data or action performed by our streetlights, and tell me the lower lux level threshold at which we would need to consider additional lighting? How often does each streetlight send a data report in normal operation, and what is the minimum load current level where we might start seeing suboptimal functioning? Have we been experiencing any problems with managing groups of streetlights via the central control system? Also, has there been any instances where the current under load was excessively high, indicating possible overloads, or situations where the operation temperature was belo normal limits due to environmental conditions? Lastly, have there been any noted communication issues between the streetlight's driver and the control system?" |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-06
weight_decay
: 0.03
num_train_epochs
: 200
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-06
weight_decay
: 0.03
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 200
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.2712 |
1 |
13.2713 |
- |
- |
- |
- |
- |
- |
0.5424 |
2 |
13.2895 |
- |
- |
- |
- |
- |
- |
0.8136 |
3 |
9.9139 |
- |
- |
- |
- |
- |
- |
1.0847 |
4 |
5.6117 |
- |
- |
- |
- |
- |
- |
1.3559 |
5 |
4.7571 |
- |
- |
- |
- |
- |
- |
1.6271 |
6 |
5.5215 |
- |
- |
- |
- |
- |
- |
1.8983 |
7 |
5.7945 |
- |
- |
- |
- |
- |
- |
2.1695 |
8 |
5.7064 |
- |
- |
- |
- |
- |
- |
2.4407 |
9 |
5.6794 |
- |
- |
- |
- |
- |
- |
2.7119 |
10 |
5.7384 |
- |
- |
- |
- |
- |
- |
2.9831 |
11 |
5.6081 |
- |
- |
- |
- |
- |
- |
3.2542 |
12 |
5.5278 |
- |
- |
- |
- |
- |
- |
3.5254 |
13 |
5.149 |
- |
- |
- |
- |
- |
- |
3.7966 |
14 |
5.5904 |
5.6043 |
0.0081 |
0.0072 |
0.0079 |
0.0055 |
0.0079 |
1.0169 |
15 |
3.9458 |
- |
- |
- |
- |
- |
- |
1.2881 |
16 |
13.3653 |
- |
- |
- |
- |
- |
- |
1.5593 |
17 |
13.4413 |
- |
- |
- |
- |
- |
- |
1.8305 |
18 |
9.4188 |
- |
- |
- |
- |
- |
- |
2.1017 |
19 |
5.717 |
- |
- |
- |
- |
- |
- |
2.3729 |
20 |
5.2455 |
- |
- |
- |
- |
- |
- |
2.6441 |
21 |
5.2117 |
- |
- |
- |
- |
- |
- |
2.9153 |
22 |
5.5217 |
- |
- |
- |
- |
- |
- |
3.1864 |
23 |
5.6725 |
- |
- |
- |
- |
- |
- |
3.4576 |
24 |
5.786 |
- |
- |
- |
- |
- |
- |
3.7288 |
25 |
5.6507 |
- |
- |
- |
- |
- |
- |
4.0 |
26 |
5.7215 |
- |
- |
- |
- |
- |
- |
4.2712 |
27 |
5.3999 |
- |
- |
- |
- |
- |
- |
4.5424 |
28 |
5.4275 |
- |
- |
- |
- |
- |
- |
4.8136 |
29 |
5.7143 |
5.5718 |
0.0082 |
0.0071 |
0.0077 |
0.0052 |
0.0077 |
2.0339 |
30 |
4.478 |
- |
- |
- |
- |
- |
- |
2.3051 |
31 |
13.1821 |
- |
- |
- |
- |
- |
- |
2.5763 |
32 |
13.2473 |
- |
- |
- |
- |
- |
- |
2.8475 |
33 |
8.8654 |
- |
- |
- |
- |
- |
- |
3.1186 |
34 |
5.3181 |
- |
- |
- |
- |
- |
- |
3.3898 |
35 |
5.2091 |
- |
- |
- |
- |
- |
- |
3.6610 |
36 |
5.6027 |
- |
- |
- |
- |
- |
- |
3.9322 |
37 |
5.6839 |
- |
- |
- |
- |
- |
- |
4.2034 |
38 |
5.5955 |
- |
- |
- |
- |
- |
- |
4.4746 |
39 |
5.5786 |
- |
- |
- |
- |
- |
- |
4.7458 |
40 |
5.4509 |
- |
- |
- |
- |
- |
- |
5.0169 |
41 |
5.3361 |
- |
- |
- |
- |
- |
- |
5.2881 |
42 |
5.1608 |
- |
- |
- |
- |
- |
- |
5.5593 |
43 |
5.4896 |
- |
- |
- |
- |
- |
- |
5.8305 |
44 |
5.6466 |
5.5241 |
0.0062 |
0.0070 |
0.0076 |
0.0095 |
0.0076 |
3.0508 |
45 |
4.5617 |
- |
- |
- |
- |
- |
- |
3.3220 |
46 |
13.0665 |
- |
- |
- |
- |
- |
- |
3.5932 |
47 |
13.1848 |
- |
- |
- |
- |
- |
- |
3.8644 |
48 |
8.4053 |
- |
- |
- |
- |
- |
- |
4.1356 |
49 |
5.2706 |
- |
- |
- |
- |
- |
- |
4.4068 |
50 |
5.4269 |
- |
- |
- |
- |
- |
- |
4.6780 |
51 |
5.3645 |
- |
- |
- |
- |
- |
- |
4.9492 |
52 |
5.3587 |
- |
- |
- |
- |
- |
- |
5.2203 |
53 |
5.1047 |
- |
- |
- |
- |
- |
- |
5.4915 |
54 |
5.743 |
- |
- |
- |
- |
- |
- |
5.7627 |
55 |
5.3754 |
- |
- |
- |
- |
- |
- |
6.0339 |
56 |
5.3021 |
- |
- |
- |
- |
- |
- |
6.3051 |
57 |
5.6983 |
- |
- |
- |
- |
- |
- |
6.5763 |
58 |
5.302 |
- |
- |
- |
- |
- |
- |
6.8475 |
59 |
5.4545 |
5.4638 |
0.0060 |
0.0070 |
0.0077 |
0.0094 |
0.0077 |
4.0678 |
60 |
5.2213 |
- |
- |
- |
- |
- |
- |
4.3390 |
61 |
12.9854 |
- |
- |
- |
- |
- |
- |
4.6102 |
62 |
13.207 |
- |
- |
- |
- |
- |
- |
4.8814 |
63 |
7.7493 |
- |
- |
- |
- |
- |
- |
5.1525 |
64 |
5.3787 |
- |
- |
- |
- |
- |
- |
5.4237 |
65 |
4.9406 |
- |
- |
- |
- |
- |
- |
5.6949 |
66 |
5.3963 |
- |
- |
- |
- |
- |
- |
5.9661 |
67 |
5.3429 |
- |
- |
- |
- |
- |
- |
6.2373 |
68 |
5.292 |
- |
- |
- |
- |
- |
- |
6.5085 |
69 |
5.6738 |
- |
- |
- |
- |
- |
- |
6.7797 |
70 |
5.5927 |
- |
- |
- |
- |
- |
- |
7.0508 |
71 |
5.5245 |
- |
- |
- |
- |
- |
- |
7.3220 |
72 |
4.8334 |
- |
- |
- |
- |
- |
- |
7.5932 |
73 |
5.2015 |
- |
- |
- |
- |
- |
- |
7.8644 |
74 |
5.5393 |
5.3954 |
0.0060 |
0.0071 |
0.0078 |
0.0094 |
0.0078 |
5.0847 |
75 |
5.6168 |
- |
- |
- |
- |
- |
- |
5.3559 |
76 |
12.8678 |
- |
- |
- |
- |
- |
- |
5.6271 |
77 |
13.2377 |
- |
- |
- |
- |
- |
- |
5.8983 |
78 |
7.1882 |
- |
- |
- |
- |
- |
- |
6.1695 |
79 |
5.1293 |
- |
- |
- |
- |
- |
- |
6.4407 |
80 |
4.9413 |
- |
- |
- |
- |
- |
- |
6.7119 |
81 |
5.1763 |
- |
- |
- |
- |
- |
- |
6.9831 |
82 |
4.9512 |
- |
- |
- |
- |
- |
- |
7.2542 |
83 |
5.2744 |
- |
- |
- |
- |
- |
- |
7.5254 |
84 |
5.0573 |
- |
- |
- |
- |
- |
- |
7.7966 |
85 |
5.1938 |
- |
- |
- |
- |
- |
- |
8.0678 |
86 |
5.1514 |
- |
- |
- |
- |
- |
- |
8.3390 |
87 |
4.9808 |
- |
- |
- |
- |
- |
- |
8.6102 |
88 |
4.9983 |
- |
- |
- |
- |
- |
- |
8.8814 |
89 |
5.3211 |
5.3268 |
0.0062 |
0.0067 |
0.0075 |
0.0095 |
0.0075 |
6.1017 |
90 |
6.1513 |
- |
- |
- |
- |
- |
- |
6.3729 |
91 |
12.7972 |
- |
- |
- |
- |
- |
- |
6.6441 |
92 |
13.0051 |
- |
- |
- |
- |
- |
- |
6.9153 |
93 |
6.551 |
- |
- |
- |
- |
- |
- |
7.1864 |
94 |
4.6644 |
- |
- |
- |
- |
- |
- |
7.4576 |
95 |
4.8619 |
- |
- |
- |
- |
- |
- |
7.7288 |
96 |
5.0812 |
- |
- |
- |
- |
- |
- |
8.0 |
97 |
4.758 |
- |
- |
- |
- |
- |
- |
8.2712 |
98 |
5.1362 |
- |
- |
- |
- |
- |
- |
8.5424 |
99 |
5.5405 |
- |
- |
- |
- |
- |
- |
8.8136 |
100 |
5.228 |
- |
- |
- |
- |
- |
- |
9.0847 |
101 |
5.1084 |
- |
- |
- |
- |
- |
- |
9.3559 |
102 |
5.1574 |
- |
- |
- |
- |
- |
- |
9.6271 |
103 |
5.3326 |
- |
- |
- |
- |
- |
- |
9.8983 |
104 |
5.34 |
5.2658 |
0.0060 |
0.0066 |
0.0076 |
0.0052 |
0.0076 |
7.1186 |
105 |
6.5789 |
- |
- |
- |
- |
- |
- |
7.3898 |
106 |
12.7557 |
- |
- |
- |
- |
- |
- |
7.6610 |
107 |
13.0203 |
- |
- |
- |
- |
- |
- |
7.9322 |
108 |
5.7148 |
- |
- |
- |
- |
- |
- |
8.2034 |
109 |
4.7945 |
- |
- |
- |
- |
- |
- |
8.4746 |
110 |
4.5926 |
- |
- |
- |
- |
- |
- |
8.7458 |
111 |
4.6727 |
- |
- |
- |
- |
- |
- |
9.0169 |
112 |
5.0886 |
- |
- |
- |
- |
- |
- |
9.2881 |
113 |
5.0562 |
- |
- |
- |
- |
- |
- |
9.5593 |
114 |
5.2167 |
- |
- |
- |
- |
- |
- |
9.8305 |
115 |
5.048 |
- |
- |
- |
- |
- |
- |
10.1017 |
116 |
4.7765 |
- |
- |
- |
- |
- |
- |
10.3729 |
117 |
4.9875 |
- |
- |
- |
- |
- |
- |
10.6441 |
118 |
4.9501 |
- |
- |
- |
- |
- |
- |
10.9153 |
119 |
4.756 |
5.2124 |
0.0057 |
0.0065 |
0.0075 |
0.0054 |
0.0075 |
8.1356 |
120 |
6.9381 |
- |
- |
- |
- |
- |
- |
8.4068 |
121 |
12.7916 |
- |
- |
- |
- |
- |
- |
8.6780 |
122 |
12.8517 |
- |
- |
- |
- |
- |
- |
8.9492 |
123 |
5.51 |
- |
- |
- |
- |
- |
- |
9.2203 |
124 |
4.686 |
- |
- |
- |
- |
- |
- |
9.4915 |
125 |
4.6611 |
- |
- |
- |
- |
- |
- |
9.7627 |
126 |
5.2767 |
- |
- |
- |
- |
- |
- |
10.0339 |
127 |
4.6103 |
- |
- |
- |
- |
- |
- |
10.3051 |
128 |
4.957 |
- |
- |
- |
- |
- |
- |
10.5763 |
129 |
5.0236 |
- |
- |
- |
- |
- |
- |
10.8475 |
130 |
5.0894 |
- |
- |
- |
- |
- |
- |
11.1186 |
131 |
4.7025 |
- |
- |
- |
- |
- |
- |
11.3898 |
132 |
5.0765 |
- |
- |
- |
- |
- |
- |
11.6610 |
133 |
4.6601 |
- |
- |
- |
- |
- |
- |
11.9322 |
134 |
4.9064 |
5.1731 |
0.0056 |
0.0060 |
0.0070 |
0.0054 |
0.0070 |
9.1525 |
135 |
7.5884 |
- |
- |
- |
- |
- |
- |
9.4237 |
136 |
12.679 |
- |
- |
- |
- |
- |
- |
9.6949 |
137 |
12.417 |
- |
- |
- |
- |
- |
- |
9.9661 |
138 |
5.1632 |
- |
- |
- |
- |
- |
- |
10.2373 |
139 |
4.9486 |
- |
- |
- |
- |
- |
- |
10.5085 |
140 |
4.6341 |
- |
- |
- |
- |
- |
- |
10.7797 |
141 |
4.9664 |
- |
- |
- |
- |
- |
- |
11.0508 |
142 |
4.9567 |
- |
- |
- |
- |
- |
- |
11.3220 |
143 |
4.7532 |
- |
- |
- |
- |
- |
- |
11.5932 |
144 |
5.2556 |
- |
- |
- |
- |
- |
- |
11.8644 |
145 |
4.9652 |
- |
- |
- |
- |
- |
- |
12.1356 |
146 |
4.8118 |
- |
- |
- |
- |
- |
- |
12.4068 |
147 |
4.704 |
- |
- |
- |
- |
- |
- |
12.6780 |
148 |
4.8922 |
- |
- |
- |
- |
- |
- |
12.9492 |
149 |
4.6571 |
5.1441 |
0.0061 |
0.0055 |
0.0064 |
0.0053 |
0.0064 |
10.1695 |
150 |
8.1284 |
- |
- |
- |
- |
- |
- |
10.4407 |
151 |
12.5703 |
- |
- |
- |
- |
- |
- |
10.7119 |
152 |
11.8696 |
- |
- |
- |
- |
- |
- |
10.9831 |
153 |
4.8543 |
- |
- |
- |
- |
- |
- |
11.2542 |
154 |
4.8099 |
- |
- |
- |
- |
- |
- |
11.5254 |
155 |
4.7009 |
- |
- |
- |
- |
- |
- |
11.7966 |
156 |
4.7986 |
- |
- |
- |
- |
- |
- |
12.0678 |
157 |
4.7973 |
- |
- |
- |
- |
- |
- |
12.3390 |
158 |
4.5529 |
- |
- |
- |
- |
- |
- |
12.6102 |
159 |
5.0275 |
- |
- |
- |
- |
- |
- |
12.8814 |
160 |
4.6675 |
- |
- |
- |
- |
- |
- |
13.1525 |
161 |
4.6538 |
- |
- |
- |
- |
- |
- |
13.4237 |
162 |
4.8355 |
- |
- |
- |
- |
- |
- |
13.6949 |
163 |
4.6304 |
- |
- |
- |
- |
- |
- |
13.9661 |
164 |
4.7047 |
5.1242 |
0.0064 |
0.0054 |
0.0064 |
0.0095 |
0.0064 |
11.1864 |
165 |
8.6549 |
- |
- |
- |
- |
- |
- |
11.4576 |
166 |
12.4788 |
- |
- |
- |
- |
- |
- |
11.7288 |
167 |
11.6425 |
- |
- |
- |
- |
- |
- |
12.0 |
168 |
4.5654 |
- |
- |
- |
- |
- |
- |
12.2712 |
169 |
4.7016 |
- |
- |
- |
- |
- |
- |
12.5424 |
170 |
4.3306 |
- |
- |
- |
- |
- |
- |
12.8136 |
171 |
4.9692 |
- |
- |
- |
- |
- |
- |
13.0847 |
172 |
4.7557 |
- |
- |
- |
- |
- |
- |
13.3559 |
173 |
4.8665 |
- |
- |
- |
- |
- |
- |
13.6271 |
174 |
4.8338 |
- |
- |
- |
- |
- |
- |
13.8983 |
175 |
4.9221 |
- |
- |
- |
- |
- |
- |
14.1695 |
176 |
4.4968 |
- |
- |
- |
- |
- |
- |
14.4407 |
177 |
4.6104 |
- |
- |
- |
- |
- |
- |
14.7119 |
178 |
4.8449 |
- |
- |
- |
- |
- |
- |
14.9831 |
179 |
4.2392 |
5.1123 |
0.0059 |
0.0055 |
0.0065 |
0.0094 |
0.0065 |
12.2034 |
180 |
9.4893 |
- |
- |
- |
- |
- |
- |
12.4746 |
181 |
12.4241 |
- |
- |
- |
- |
- |
- |
12.7458 |
182 |
11.0389 |
- |
- |
- |
- |
- |
- |
13.0169 |
183 |
4.7595 |
- |
- |
- |
- |
- |
- |
13.2881 |
184 |
4.5408 |
- |
- |
- |
- |
- |
- |
13.5593 |
185 |
4.6108 |
- |
- |
- |
- |
- |
- |
13.8305 |
186 |
4.5832 |
- |
- |
- |
- |
- |
- |
14.1017 |
187 |
4.6741 |
- |
- |
- |
- |
- |
- |
14.3729 |
188 |
4.9353 |
- |
- |
- |
- |
- |
- |
14.6441 |
189 |
5.0511 |
- |
- |
- |
- |
- |
- |
14.9153 |
190 |
4.6575 |
- |
- |
- |
- |
- |
- |
15.1864 |
191 |
4.648 |
- |
- |
- |
- |
- |
- |
15.4576 |
192 |
4.6224 |
- |
- |
- |
- |
- |
- |
15.7288 |
193 |
4.9292 |
- |
- |
- |
- |
- |
- |
16.0 |
194 |
3.7805 |
5.1058 |
0.0063 |
0.0057 |
0.0062 |
0.0094 |
0.0062 |
13.2203 |
195 |
10.2695 |
- |
- |
- |
- |
- |
- |
13.4915 |
196 |
12.5043 |
- |
- |
- |
- |
- |
- |
13.7627 |
197 |
10.4795 |
- |
- |
- |
- |
- |
- |
14.0339 |
198 |
4.6901 |
- |
- |
- |
- |
- |
- |
14.3051 |
199 |
4.6538 |
- |
- |
- |
- |
- |
- |
14.5763 |
200 |
4.4736 |
- |
- |
- |
- |
- |
- |
14.8475 |
201 |
4.4383 |
- |
- |
- |
- |
- |
- |
15.1186 |
202 |
5.0382 |
- |
- |
- |
- |
- |
- |
15.3898 |
203 |
4.5636 |
- |
- |
- |
- |
- |
- |
15.6610 |
204 |
4.8089 |
- |
- |
- |
- |
- |
- |
15.9322 |
205 |
4.4746 |
- |
- |
- |
- |
- |
- |
16.2034 |
206 |
4.5876 |
- |
- |
- |
- |
- |
- |
16.4746 |
207 |
4.4972 |
- |
- |
- |
- |
- |
- |
16.7458 |
208 |
4.8569 |
- |
- |
- |
- |
- |
- |
17.0169 |
209 |
3.5883 |
5.1031 |
0.0059 |
0.0057 |
0.0061 |
0.0095 |
0.0061 |
14.2373 |
210 |
10.8988 |
- |
- |
- |
- |
- |
- |
14.5085 |
211 |
12.4944 |
- |
- |
- |
- |
- |
- |
14.7797 |
212 |
10.1041 |
- |
- |
- |
- |
- |
- |
15.0508 |
213 |
4.8811 |
- |
- |
- |
- |
- |
- |
15.3220 |
214 |
4.6292 |
- |
- |
- |
- |
- |
- |
15.5932 |
215 |
4.4828 |
- |
- |
- |
- |
- |
- |
15.8644 |
216 |
4.7588 |
- |
- |
- |
- |
- |
- |
16.1356 |
217 |
4.26 |
- |
- |
- |
- |
- |
- |
16.4068 |
218 |
4.9124 |
- |
- |
- |
- |
- |
- |
16.6780 |
219 |
4.8098 |
- |
- |
- |
- |
- |
- |
16.9492 |
220 |
4.4439 |
- |
- |
- |
- |
- |
- |
17.2203 |
221 |
4.4824 |
- |
- |
- |
- |
- |
- |
17.4915 |
222 |
4.7771 |
- |
- |
- |
- |
- |
- |
17.7627 |
223 |
4.5966 |
- |
- |
- |
- |
- |
- |
18.0339 |
224 |
3.1409 |
5.1009 |
0.0055 |
0.0057 |
0.0062 |
0.0052 |
0.0062 |
15.2542 |
225 |
11.657 |
- |
- |
- |
- |
- |
- |
15.5254 |
226 |
12.5032 |
- |
- |
- |
- |
- |
- |
15.7966 |
227 |
9.4495 |
- |
- |
- |
- |
- |
- |
16.0678 |
228 |
4.7099 |
- |
- |
- |
- |
- |
- |
16.3390 |
229 |
4.6049 |
- |
- |
- |
- |
- |
- |
16.6102 |
230 |
4.6311 |
- |
- |
- |
- |
- |
- |
16.8814 |
231 |
4.7562 |
- |
- |
- |
- |
- |
- |
17.1525 |
232 |
4.7195 |
- |
- |
- |
- |
- |
- |
17.4237 |
233 |
4.8557 |
- |
- |
- |
- |
- |
- |
17.6949 |
234 |
4.8423 |
- |
- |
- |
- |
- |
- |
17.9661 |
235 |
4.5764 |
- |
- |
- |
- |
- |
- |
18.2373 |
236 |
4.5081 |
- |
- |
- |
- |
- |
- |
18.5085 |
237 |
4.7974 |
- |
- |
- |
- |
- |
- |
18.7797 |
238 |
4.871 |
- |
- |
- |
- |
- |
- |
19.0508 |
239 |
2.8558 |
5.1020 |
0.0054 |
0.0057 |
0.0061 |
0.0054 |
0.0061 |
16.2712 |
240 |
12.4297 |
- |
- |
- |
- |
- |
- |
16.5424 |
241 |
12.5186 |
- |
- |
- |
- |
- |
- |
16.8136 |
242 |
8.8827 |
- |
- |
- |
- |
- |
- |
17.0847 |
243 |
4.8406 |
- |
- |
- |
- |
- |
- |
17.3559 |
244 |
4.4367 |
- |
- |
- |
- |
- |
- |
17.6271 |
245 |
4.5996 |
- |
- |
- |
- |
- |
- |
17.8983 |
246 |
4.6692 |
- |
- |
- |
- |
- |
- |
18.1695 |
247 |
4.6498 |
- |
- |
- |
- |
- |
- |
18.4407 |
248 |
4.7211 |
- |
- |
- |
- |
- |
- |
18.7119 |
249 |
4.7675 |
- |
- |
- |
- |
- |
- |
18.9831 |
250 |
4.4405 |
- |
- |
- |
- |
- |
- |
19.2542 |
251 |
4.6778 |
- |
- |
- |
- |
- |
- |
19.5254 |
252 |
4.6674 |
- |
- |
- |
- |
- |
- |
19.7966 |
253 |
4.735 |
5.1036 |
0.0054 |
0.0056 |
0.0060 |
0.0054 |
0.0060 |
17.0169 |
254 |
3.6188 |
- |
- |
- |
- |
- |
- |
17.2881 |
255 |
12.4112 |
- |
- |
- |
- |
- |
- |
17.5593 |
256 |
12.5261 |
- |
- |
- |
- |
- |
- |
17.8305 |
257 |
8.3408 |
- |
- |
- |
- |
- |
- |
18.1017 |
258 |
4.6496 |
- |
- |
- |
- |
- |
- |
18.3729 |
259 |
4.7177 |
- |
- |
- |
- |
- |
- |
18.6441 |
260 |
4.7956 |
- |
- |
- |
- |
- |
- |
18.9153 |
261 |
4.7228 |
- |
- |
- |
- |
- |
- |
19.1864 |
262 |
4.6083 |
- |
- |
- |
- |
- |
- |
19.4576 |
263 |
4.7985 |
- |
- |
- |
- |
- |
- |
19.7288 |
264 |
4.6675 |
- |
- |
- |
- |
- |
- |
20.0 |
265 |
4.6353 |
- |
- |
- |
- |
- |
- |
20.2712 |
266 |
4.5717 |
- |
- |
- |
- |
- |
- |
20.5424 |
267 |
4.4358 |
- |
- |
- |
- |
- |
- |
20.8136 |
268 |
4.8288 |
5.1030 |
0.0056 |
0.0057 |
0.0062 |
0.0053 |
0.0062 |
18.0339 |
269 |
3.7877 |
- |
- |
- |
- |
- |
- |
18.3051 |
270 |
12.4042 |
- |
- |
- |
- |
- |
- |
18.5763 |
271 |
12.4793 |
- |
- |
- |
- |
- |
- |
18.8475 |
272 |
7.9475 |
- |
- |
- |
- |
- |
- |
19.1186 |
273 |
4.5502 |
- |
- |
- |
- |
- |
- |
19.3898 |
274 |
4.5565 |
- |
- |
- |
- |
- |
- |
19.6610 |
275 |
4.4172 |
- |
- |
- |
- |
- |
- |
19.9322 |
276 |
4.5319 |
- |
- |
- |
- |
- |
- |
20.2034 |
277 |
4.5635 |
- |
- |
- |
- |
- |
- |
20.4746 |
278 |
4.5233 |
- |
- |
- |
- |
- |
- |
20.7458 |
279 |
4.6766 |
- |
- |
- |
- |
- |
- |
21.0169 |
280 |
4.5863 |
- |
- |
- |
- |
- |
- |
21.2881 |
281 |
4.5784 |
- |
- |
- |
- |
- |
- |
21.5593 |
282 |
4.7198 |
- |
- |
- |
- |
- |
- |
21.8305 |
283 |
4.7383 |
5.1065 |
0.0054 |
0.0056 |
0.0061 |
0.0050 |
0.0061 |
19.0508 |
284 |
4.4257 |
- |
- |
- |
- |
- |
- |
19.3220 |
285 |
12.3475 |
- |
- |
- |
- |
- |
- |
19.5932 |
286 |
12.5168 |
- |
- |
- |
- |
- |
- |
19.8644 |
287 |
7.3671 |
- |
- |
- |
- |
- |
- |
20.1356 |
288 |
4.3771 |
- |
- |
- |
- |
- |
- |
20.4068 |
289 |
4.542 |
- |
- |
- |
- |
- |
- |
20.6780 |
290 |
4.3629 |
- |
- |
- |
- |
- |
- |
20.9492 |
291 |
4.5474 |
- |
- |
- |
- |
- |
- |
21.2203 |
292 |
4.7436 |
- |
- |
- |
- |
- |
- |
21.4915 |
293 |
4.5915 |
- |
- |
- |
- |
- |
- |
21.7627 |
294 |
4.5522 |
- |
- |
- |
- |
- |
- |
22.0339 |
295 |
4.6591 |
- |
- |
- |
- |
- |
- |
22.3051 |
296 |
4.6179 |
- |
- |
- |
- |
- |
- |
22.5763 |
297 |
4.6086 |
- |
- |
- |
- |
- |
- |
22.8475 |
298 |
4.8808 |
5.1083 |
0.0054 |
0.0057 |
0.0062 |
0.0055 |
0.0062 |
20.0678 |
299 |
4.7358 |
- |
- |
- |
- |
- |
- |
20.3390 |
300 |
12.3209 |
- |
- |
- |
- |
- |
- |
20.6102 |
301 |
12.6406 |
- |
- |
- |
- |
- |
- |
20.8814 |
302 |
6.7971 |
- |
- |
- |
- |
- |
- |
21.1525 |
303 |
4.3723 |
- |
- |
- |
- |
- |
- |
21.4237 |
304 |
4.61 |
- |
- |
- |
- |
- |
- |
21.6949 |
305 |
4.4624 |
- |
- |
- |
- |
- |
- |
21.9661 |
306 |
4.6145 |
- |
- |
- |
- |
- |
- |
22.2373 |
307 |
4.5794 |
- |
- |
- |
- |
- |
- |
22.5085 |
308 |
4.6625 |
- |
- |
- |
- |
- |
- |
22.7797 |
309 |
4.5499 |
- |
- |
- |
- |
- |
- |
23.0508 |
310 |
4.5657 |
- |
- |
- |
- |
- |
- |
23.3220 |
311 |
4.5896 |
- |
- |
- |
- |
- |
- |
23.5932 |
312 |
4.5692 |
- |
- |
- |
- |
- |
- |
23.8644 |
313 |
4.93 |
5.1119 |
0.0055 |
0.0057 |
0.0061 |
0.0056 |
0.0061 |
21.0847 |
314 |
5.3829 |
- |
- |
- |
- |
- |
- |
21.3559 |
315 |
12.3422 |
- |
- |
- |
- |
- |
- |
21.6271 |
316 |
12.601 |
- |
- |
- |
- |
- |
- |
21.8983 |
317 |
6.5062 |
- |
- |
- |
- |
- |
- |
22.1695 |
318 |
4.4681 |
- |
- |
- |
- |
- |
- |
22.4407 |
319 |
4.4244 |
- |
- |
- |
- |
- |
- |
22.7119 |
320 |
4.4514 |
- |
- |
- |
- |
- |
- |
22.9831 |
321 |
4.5469 |
- |
- |
- |
- |
- |
- |
23.2542 |
322 |
4.6924 |
- |
- |
- |
- |
- |
- |
23.5254 |
323 |
4.682 |
- |
- |
- |
- |
- |
- |
23.7966 |
324 |
4.6403 |
- |
- |
- |
- |
- |
- |
24.0678 |
325 |
4.6272 |
- |
- |
- |
- |
- |
- |
24.3390 |
326 |
4.3605 |
- |
- |
- |
- |
- |
- |
24.6102 |
327 |
4.5992 |
- |
- |
- |
- |
- |
- |
24.8814 |
328 |
4.6776 |
5.1126 |
0.0053 |
0.0057 |
0.0061 |
0.0056 |
0.0061 |
22.1017 |
329 |
5.8504 |
- |
- |
- |
- |
- |
- |
22.3729 |
330 |
12.335 |
- |
- |
- |
- |
- |
- |
22.6441 |
331 |
12.5779 |
- |
- |
- |
- |
- |
- |
22.9153 |
332 |
5.7261 |
- |
- |
- |
- |
- |
- |
23.1864 |
333 |
4.5411 |
- |
- |
- |
- |
- |
- |
23.4576 |
334 |
4.4783 |
- |
- |
- |
- |
- |
- |
23.7288 |
335 |
4.5589 |
- |
- |
- |
- |
- |
- |
24.0 |
336 |
4.6305 |
- |
- |
- |
- |
- |
- |
24.2712 |
337 |
4.674 |
- |
- |
- |
- |
- |
- |
24.5424 |
338 |
4.7455 |
- |
- |
- |
- |
- |
- |
24.8136 |
339 |
4.6011 |
- |
- |
- |
- |
- |
- |
25.0847 |
340 |
4.5899 |
- |
- |
- |
- |
- |
- |
25.3559 |
341 |
4.3981 |
- |
- |
- |
- |
- |
- |
25.6271 |
342 |
4.7031 |
- |
- |
- |
- |
- |
- |
25.8983 |
343 |
4.68 |
5.1182 |
0.0054 |
0.0057 |
0.0059 |
0.0056 |
0.0059 |
23.1186 |
344 |
6.3521 |
- |
- |
- |
- |
- |
- |
23.3898 |
345 |
12.2283 |
- |
- |
- |
- |
- |
- |
23.6610 |
346 |
12.533 |
- |
- |
- |
- |
- |
- |
23.9322 |
347 |
5.2654 |
- |
- |
- |
- |
- |
- |
24.2034 |
348 |
4.3667 |
- |
- |
- |
- |
- |
- |
24.4746 |
349 |
4.4718 |
- |
- |
- |
- |
- |
- |
24.7458 |
350 |
4.6212 |
- |
- |
- |
- |
- |
- |
25.0169 |
351 |
4.447 |
- |
- |
- |
- |
- |
- |
25.2881 |
352 |
4.6247 |
- |
- |
- |
- |
- |
- |
25.5593 |
353 |
5.0093 |
- |
- |
- |
- |
- |
- |
25.8305 |
354 |
4.6316 |
- |
- |
- |
- |
- |
- |
26.1017 |
355 |
4.6655 |
- |
- |
- |
- |
- |
- |
26.3729 |
356 |
4.5964 |
- |
- |
- |
- |
- |
- |
26.6441 |
357 |
4.682 |
- |
- |
- |
- |
- |
- |
26.9153 |
358 |
4.6375 |
5.1205 |
0.0051 |
0.0056 |
0.0059 |
0.0055 |
0.0059 |
24.1356 |
359 |
6.727 |
- |
- |
- |
- |
- |
- |
24.4068 |
360 |
12.3706 |
- |
- |
- |
- |
- |
- |
24.6780 |
361 |
12.4755 |
- |
- |
- |
- |
- |
- |
24.9492 |
362 |
4.623 |
- |
- |
- |
- |
- |
- |
25.2203 |
363 |
4.2947 |
- |
- |
- |
- |
- |
- |
25.4915 |
364 |
4.3993 |
- |
- |
- |
- |
- |
- |
25.7627 |
365 |
4.4148 |
- |
- |
- |
- |
- |
- |
26.0339 |
366 |
4.2376 |
- |
- |
- |
- |
- |
- |
26.3051 |
367 |
4.6334 |
- |
- |
- |
- |
- |
- |
26.5763 |
368 |
4.7007 |
- |
- |
- |
- |
- |
- |
26.8475 |
369 |
4.3542 |
- |
- |
- |
- |
- |
- |
27.1186 |
370 |
4.7036 |
- |
- |
- |
- |
- |
- |
27.3898 |
371 |
4.2382 |
- |
- |
- |
- |
- |
- |
27.6610 |
372 |
4.5011 |
- |
- |
- |
- |
- |
- |
27.9322 |
373 |
4.6292 |
5.1241 |
0.0051 |
0.0056 |
0.0059 |
0.0056 |
0.0059 |
25.1525 |
374 |
7.3562 |
- |
- |
- |
- |
- |
- |
25.4237 |
375 |
12.2926 |
- |
- |
- |
- |
- |
- |
25.6949 |
376 |
12.1694 |
- |
- |
- |
- |
- |
- |
25.9661 |
377 |
4.7183 |
- |
- |
- |
- |
- |
- |
26.2373 |
378 |
4.4099 |
- |
- |
- |
- |
- |
- |
26.5085 |
379 |
4.3366 |
- |
- |
- |
- |
- |
- |
26.7797 |
380 |
4.4848 |
- |
- |
- |
- |
- |
- |
27.0508 |
381 |
4.6947 |
- |
- |
- |
- |
- |
- |
27.3220 |
382 |
4.5683 |
- |
- |
- |
- |
- |
- |
27.5932 |
383 |
4.7691 |
- |
- |
- |
- |
- |
- |
27.8644 |
384 |
4.3879 |
- |
- |
- |
- |
- |
- |
28.1356 |
385 |
4.3461 |
- |
- |
- |
- |
- |
- |
28.4068 |
386 |
4.4756 |
- |
- |
- |
- |
- |
- |
28.6780 |
387 |
4.5355 |
- |
- |
- |
- |
- |
- |
28.9492 |
388 |
4.4837 |
5.1278 |
0.0052 |
0.0056 |
0.0059 |
0.0054 |
0.0059 |
26.1695 |
389 |
7.9407 |
- |
- |
- |
- |
- |
- |
26.4407 |
390 |
12.3054 |
- |
- |
- |
- |
- |
- |
26.7119 |
391 |
11.6158 |
- |
- |
- |
- |
- |
- |
26.9831 |
392 |
4.5724 |
- |
- |
- |
- |
- |
- |
27.2542 |
393 |
4.467 |
- |
- |
- |
- |
- |
- |
27.5254 |
394 |
4.4395 |
- |
- |
- |
- |
- |
- |
27.7966 |
395 |
4.4111 |
- |
- |
- |
- |
- |
- |
28.0678 |
396 |
4.5565 |
- |
- |
- |
- |
- |
- |
28.3390 |
397 |
4.6063 |
- |
- |
- |
- |
- |
- |
28.6102 |
398 |
4.5312 |
- |
- |
- |
- |
- |
- |
28.8814 |
399 |
4.5436 |
- |
- |
- |
- |
- |
- |
29.1525 |
400 |
4.5366 |
- |
- |
- |
- |
- |
- |
29.4237 |
401 |
4.4488 |
- |
- |
- |
- |
- |
- |
29.6949 |
402 |
4.5641 |
- |
- |
- |
- |
- |
- |
29.9661 |
403 |
4.2491 |
5.1303 |
0.0053 |
0.0057 |
0.0060 |
0.0055 |
0.0060 |
27.1864 |
404 |
8.574 |
- |
- |
- |
- |
- |
- |
27.4576 |
405 |
12.2836 |
- |
- |
- |
- |
- |
- |
27.7288 |
406 |
11.1935 |
- |
- |
- |
- |
- |
- |
28.0 |
407 |
4.5464 |
- |
- |
- |
- |
- |
- |
28.2712 |
408 |
4.3132 |
- |
- |
- |
- |
- |
- |
28.5424 |
409 |
4.3553 |
- |
- |
- |
- |
- |
- |
28.8136 |
410 |
4.4679 |
- |
- |
- |
- |
- |
- |
29.0847 |
411 |
4.7705 |
- |
- |
- |
- |
- |
- |
29.3559 |
412 |
4.5667 |
- |
- |
- |
- |
- |
- |
29.6271 |
413 |
4.6547 |
- |
- |
- |
- |
- |
- |
29.8983 |
414 |
4.6709 |
- |
- |
- |
- |
- |
- |
30.1695 |
415 |
4.784 |
- |
- |
- |
- |
- |
- |
30.4407 |
416 |
4.4368 |
- |
- |
- |
- |
- |
- |
30.7119 |
417 |
4.6159 |
- |
- |
- |
- |
- |
- |
30.9831 |
418 |
4.0117 |
5.1322 |
0.0050 |
0.0057 |
0.0059 |
0.0054 |
0.0059 |
28.2034 |
419 |
9.2905 |
- |
- |
- |
- |
- |
- |
28.4746 |
420 |
12.2439 |
- |
- |
- |
- |
- |
- |
28.7458 |
421 |
10.722 |
- |
- |
- |
- |
- |
- |
29.0169 |
422 |
4.6608 |
- |
- |
- |
- |
- |
- |
29.2881 |
423 |
4.5196 |
- |
- |
- |
- |
- |
- |
29.5593 |
424 |
4.4313 |
- |
- |
- |
- |
- |
- |
29.8305 |
425 |
4.513 |
- |
- |
- |
- |
- |
- |
30.1017 |
426 |
4.5812 |
- |
- |
- |
- |
- |
- |
30.3729 |
427 |
4.5275 |
- |
- |
- |
- |
- |
- |
30.6441 |
428 |
4.8022 |
- |
- |
- |
- |
- |
- |
30.9153 |
429 |
4.5171 |
- |
- |
- |
- |
- |
- |
31.1864 |
430 |
4.5968 |
- |
- |
- |
- |
- |
- |
31.4576 |
431 |
4.2145 |
- |
- |
- |
- |
- |
- |
31.7288 |
432 |
4.7041 |
- |
- |
- |
- |
- |
- |
32.0 |
433 |
3.6187 |
5.1356 |
0.0051 |
0.0057 |
0.0059 |
0.0055 |
0.0059 |
29.2203 |
434 |
10.0897 |
- |
- |
- |
- |
- |
- |
29.4915 |
435 |
12.2909 |
- |
- |
- |
- |
- |
- |
29.7627 |
436 |
10.1362 |
- |
- |
- |
- |
- |
- |
30.0339 |
437 |
4.5172 |
- |
- |
- |
- |
- |
- |
30.3051 |
438 |
4.3273 |
- |
- |
- |
- |
- |
- |
30.5763 |
439 |
4.5272 |
- |
- |
- |
- |
- |
- |
30.8475 |
440 |
4.376 |
- |
- |
- |
- |
- |
- |
31.1186 |
441 |
4.5803 |
- |
- |
- |
- |
- |
- |
31.3898 |
442 |
4.5654 |
- |
- |
- |
- |
- |
- |
31.6610 |
443 |
4.5024 |
- |
- |
- |
- |
- |
- |
31.9322 |
444 |
4.5889 |
- |
- |
- |
- |
- |
- |
32.2034 |
445 |
4.6489 |
- |
- |
- |
- |
- |
- |
32.4746 |
446 |
4.4505 |
- |
- |
- |
- |
- |
- |
32.7458 |
447 |
4.7026 |
- |
- |
- |
- |
- |
- |
33.0169 |
448 |
3.4719 |
5.1368 |
0.0050 |
0.0056 |
0.0059 |
0.0052 |
0.0059 |
30.2373 |
449 |
10.7633 |
- |
- |
- |
- |
- |
- |
30.5085 |
450 |
12.3203 |
- |
- |
- |
- |
- |
- |
30.7797 |
451 |
9.7535 |
- |
- |
- |
- |
- |
- |
31.0508 |
452 |
4.7462 |
- |
- |
- |
- |
- |
- |
31.3220 |
453 |
4.4271 |
- |
- |
- |
- |
- |
- |
31.5932 |
454 |
4.4347 |
- |
- |
- |
- |
- |
- |
31.8644 |
455 |
4.6443 |
- |
- |
- |
- |
- |
- |
32.1356 |
456 |
4.6344 |
- |
- |
- |
- |
- |
- |
32.4068 |
457 |
4.6518 |
- |
- |
- |
- |
- |
- |
32.6780 |
458 |
4.6437 |
- |
- |
- |
- |
- |
- |
32.9492 |
459 |
4.6168 |
- |
- |
- |
- |
- |
- |
33.2203 |
460 |
4.4948 |
- |
- |
- |
- |
- |
- |
33.4915 |
461 |
4.5268 |
- |
- |
- |
- |
- |
- |
33.7627 |
462 |
4.4844 |
- |
- |
- |
- |
- |
- |
34.0339 |
463 |
3.276 |
5.1384 |
0.0051 |
0.0057 |
0.0060 |
0.0053 |
0.0060 |
31.2542 |
464 |
11.5311 |
- |
- |
- |
- |
- |
- |
31.5254 |
465 |
12.3812 |
- |
- |
- |
- |
- |
- |
31.7966 |
466 |
9.1499 |
- |
- |
- |
- |
- |
- |
32.0678 |
467 |
4.7032 |
- |
- |
- |
- |
- |
- |
32.3390 |
468 |
4.2429 |
- |
- |
- |
- |
- |
- |
32.6102 |
469 |
4.549 |
- |
- |
- |
- |
- |
- |
32.8814 |
470 |
4.7083 |
- |
- |
- |
- |
- |
- |
33.1525 |
471 |
4.5348 |
- |
- |
- |
- |
- |
- |
33.4237 |
472 |
4.472 |
- |
- |
- |
- |
- |
- |
33.6949 |
473 |
4.5818 |
- |
- |
- |
- |
- |
- |
33.9661 |
474 |
4.5534 |
- |
- |
- |
- |
- |
- |
34.2373 |
475 |
4.5743 |
- |
- |
- |
- |
- |
- |
34.5085 |
476 |
4.54 |
- |
- |
- |
- |
- |
- |
34.7797 |
477 |
4.681 |
- |
- |
- |
- |
- |
- |
35.0508 |
478 |
2.9902 |
5.1397 |
0.0052 |
0.0057 |
0.0059 |
0.0053 |
0.0059 |
32.2712 |
479 |
12.3174 |
- |
- |
- |
- |
- |
- |
32.5424 |
480 |
12.2996 |
- |
- |
- |
- |
- |
- |
32.8136 |
481 |
8.7153 |
- |
- |
- |
- |
- |
- |
33.0847 |
482 |
4.5692 |
- |
- |
- |
- |
- |
- |
33.3559 |
483 |
4.3255 |
- |
- |
- |
- |
- |
- |
33.6271 |
484 |
4.4515 |
- |
- |
- |
- |
- |
- |
33.8983 |
485 |
4.6708 |
- |
- |
- |
- |
- |
- |
34.1695 |
486 |
4.2648 |
- |
- |
- |
- |
- |
- |
34.4407 |
487 |
4.6268 |
- |
- |
- |
- |
- |
- |
34.7119 |
488 |
4.703 |
- |
- |
- |
- |
- |
- |
34.9831 |
489 |
4.6269 |
- |
- |
- |
- |
- |
- |
35.2542 |
490 |
4.6464 |
- |
- |
- |
- |
- |
- |
35.5254 |
491 |
4.4952 |
- |
- |
- |
- |
- |
- |
35.7966 |
492 |
4.6097 |
5.1406 |
0.0052 |
0.0058 |
0.0058 |
0.0054 |
0.0058 |
33.0169 |
493 |
3.2718 |
- |
- |
- |
- |
- |
- |
33.2881 |
494 |
12.3329 |
- |
- |
- |
- |
- |
- |
33.5593 |
495 |
12.3503 |
- |
- |
- |
- |
- |
- |
33.8305 |
496 |
8.1544 |
- |
- |
- |
- |
- |
- |
34.1017 |
497 |
4.4684 |
- |
- |
- |
- |
- |
- |
34.3729 |
498 |
4.4062 |
- |
- |
- |
- |
- |
- |
34.6441 |
499 |
4.2644 |
- |
- |
- |
- |
- |
- |
34.9153 |
500 |
4.5294 |
- |
- |
- |
- |
- |
- |
35.1864 |
501 |
4.673 |
- |
- |
- |
- |
- |
- |
35.4576 |
502 |
4.4884 |
- |
- |
- |
- |
- |
- |
35.7288 |
503 |
4.5989 |
- |
- |
- |
- |
- |
- |
36.0 |
504 |
4.6182 |
- |
- |
- |
- |
- |
- |
36.2712 |
505 |
4.6487 |
- |
- |
- |
- |
- |
- |
36.5424 |
506 |
4.6436 |
- |
- |
- |
- |
- |
- |
36.8136 |
507 |
4.6059 |
5.1417 |
0.0051 |
0.0057 |
0.0059 |
0.0052 |
0.0059 |
34.0339 |
508 |
3.7589 |
- |
- |
- |
- |
- |
- |
34.3051 |
509 |
12.2815 |
- |
- |
- |
- |
- |
- |
34.5763 |
510 |
12.5481 |
- |
- |
- |
- |
- |
- |
34.8475 |
511 |
7.6339 |
- |
- |
- |
- |
- |
- |
35.1186 |
512 |
4.5528 |
- |
- |
- |
- |
- |
- |
35.3898 |
513 |
4.3266 |
- |
- |
- |
- |
- |
- |
35.6610 |
514 |
4.3093 |
- |
- |
- |
- |
- |
- |
35.9322 |
515 |
4.7401 |
- |
- |
- |
- |
- |
- |
36.2034 |
516 |
4.523 |
- |
- |
- |
- |
- |
- |
36.4746 |
517 |
4.5255 |
- |
- |
- |
- |
- |
- |
36.7458 |
518 |
4.5058 |
- |
- |
- |
- |
- |
- |
37.0169 |
519 |
4.5614 |
- |
- |
- |
- |
- |
- |
37.2881 |
520 |
4.5323 |
- |
- |
- |
- |
- |
- |
37.5593 |
521 |
4.5739 |
- |
- |
- |
- |
- |
- |
37.8305 |
522 |
4.6501 |
5.1427 |
0.0052 |
0.0058 |
0.0059 |
0.0053 |
0.0059 |
35.0508 |
523 |
4.2083 |
- |
- |
- |
- |
- |
- |
35.3220 |
524 |
12.2888 |
- |
- |
- |
- |
- |
- |
35.5932 |
525 |
12.4709 |
- |
- |
- |
- |
- |
- |
35.8644 |
526 |
7.3926 |
- |
- |
- |
- |
- |
- |
36.1356 |
527 |
4.4719 |
- |
- |
- |
- |
- |
- |
36.4068 |
528 |
4.5033 |
- |
- |
- |
- |
- |
- |
36.6780 |
529 |
4.388 |
- |
- |
- |
- |
- |
- |
36.9492 |
530 |
4.5606 |
- |
- |
- |
- |
- |
- |
37.2203 |
531 |
4.6936 |
- |
- |
- |
- |
- |
- |
37.4915 |
532 |
4.6008 |
- |
- |
- |
- |
- |
- |
37.7627 |
533 |
4.6973 |
- |
- |
- |
- |
- |
- |
38.0339 |
534 |
4.4194 |
- |
- |
- |
- |
- |
- |
38.3051 |
535 |
4.5616 |
- |
- |
- |
- |
- |
- |
38.5763 |
536 |
4.6307 |
- |
- |
- |
- |
- |
- |
38.8475 |
537 |
4.8322 |
5.1442 |
0.0051 |
0.0057 |
0.0059 |
0.0053 |
0.0059 |
36.0678 |
538 |
4.8388 |
- |
- |
- |
- |
- |
- |
36.3390 |
539 |
12.2334 |
- |
- |
- |
- |
- |
- |
36.6102 |
540 |
12.4205 |
- |
- |
- |
- |
- |
- |
36.8814 |
541 |
6.9051 |
- |
- |
- |
- |
- |
- |
37.1525 |
542 |
4.6011 |
- |
- |
- |
- |
- |
- |
37.4237 |
543 |
4.4701 |
- |
- |
- |
- |
- |
- |
37.6949 |
544 |
4.421 |
- |
- |
- |
- |
- |
- |
37.9661 |
545 |
4.6877 |
- |
- |
- |
- |
- |
- |
38.2373 |
546 |
4.6348 |
- |
- |
- |
- |
- |
- |
38.5085 |
547 |
4.5822 |
- |
- |
- |
- |
- |
- |
38.7797 |
548 |
4.5697 |
- |
- |
- |
- |
- |
- |
39.0508 |
549 |
4.3118 |
- |
- |
- |
- |
- |
- |
39.3220 |
550 |
4.5131 |
- |
- |
- |
- |
- |
- |
39.5932 |
551 |
4.4879 |
- |
- |
- |
- |
- |
- |
39.8644 |
552 |
4.5945 |
5.1429 |
0.0052 |
0.0056 |
0.0059 |
0.0054 |
0.0059 |
37.0847 |
553 |
5.4083 |
- |
- |
- |
- |
- |
- |
37.3559 |
554 |
12.2092 |
- |
- |
- |
- |
- |
- |
37.6271 |
555 |
12.5043 |
- |
- |
- |
- |
- |
- |
37.8983 |
556 |
6.1239 |
- |
- |
- |
- |
- |
- |
38.1695 |
557 |
4.2932 |
- |
- |
- |
- |
- |
- |
38.4407 |
558 |
4.3845 |
- |
- |
- |
- |
- |
- |
38.7119 |
559 |
4.5619 |
- |
- |
- |
- |
- |
- |
38.9831 |
560 |
4.6936 |
- |
- |
- |
- |
- |
- |
39.2542 |
561 |
4.6636 |
- |
- |
- |
- |
- |
- |
39.5254 |
562 |
4.7964 |
- |
- |
- |
- |
- |
- |
39.7966 |
563 |
4.613 |
- |
- |
- |
- |
- |
- |
40.0678 |
564 |
4.5856 |
- |
- |
- |
- |
- |
- |
40.3390 |
565 |
4.4605 |
- |
- |
- |
- |
- |
- |
40.6102 |
566 |
4.5461 |
- |
- |
- |
- |
- |
- |
40.8814 |
567 |
4.7145 |
5.1454 |
0.0052 |
0.0056 |
0.0059 |
0.0052 |
0.0059 |
38.1017 |
568 |
5.8311 |
- |
- |
- |
- |
- |
- |
38.3729 |
569 |
12.2142 |
- |
- |
- |
- |
- |
- |
38.6441 |
570 |
12.4489 |
- |
- |
- |
- |
- |
- |
38.9153 |
571 |
5.7328 |
- |
- |
- |
- |
- |
- |
39.1864 |
572 |
4.4402 |
- |
- |
- |
- |
- |
- |
39.4576 |
573 |
4.1806 |
- |
- |
- |
- |
- |
- |
39.7288 |
574 |
4.6327 |
- |
- |
- |
- |
- |
- |
40.0 |
575 |
4.2768 |
- |
- |
- |
- |
- |
- |
40.2712 |
576 |
4.4669 |
- |
- |
- |
- |
- |
- |
40.5424 |
577 |
4.8094 |
- |
- |
- |
- |
- |
- |
40.8136 |
578 |
4.5773 |
- |
- |
- |
- |
- |
- |
41.0847 |
579 |
4.439 |
- |
- |
- |
- |
- |
- |
41.3559 |
580 |
4.5718 |
- |
- |
- |
- |
- |
- |
41.6271 |
581 |
4.5955 |
- |
- |
- |
- |
- |
- |
41.8983 |
582 |
4.5043 |
5.1443 |
0.0051 |
0.0056 |
0.0059 |
0.0054 |
0.0059 |
39.1186 |
583 |
6.359 |
- |
- |
- |
- |
- |
- |
39.3898 |
584 |
12.212 |
- |
- |
- |
- |
- |
- |
39.6610 |
585 |
12.538 |
- |
- |
- |
- |
- |
- |
39.9322 |
586 |
5.0971 |
- |
- |
- |
- |
- |
- |
40.2034 |
587 |
4.4783 |
- |
- |
- |
- |
- |
- |
40.4746 |
588 |
4.394 |
- |
- |
- |
- |
- |
- |
40.7458 |
589 |
4.4847 |
- |
- |
- |
- |
- |
- |
41.0169 |
590 |
4.4116 |
- |
- |
- |
- |
- |
- |
41.2881 |
591 |
4.3979 |
- |
- |
- |
- |
- |
- |
41.5593 |
592 |
4.6652 |
- |
- |
- |
- |
- |
- |
41.8305 |
593 |
4.3939 |
- |
- |
- |
- |
- |
- |
42.1017 |
594 |
4.5555 |
- |
- |
- |
- |
- |
- |
42.3729 |
595 |
4.4966 |
- |
- |
- |
- |
- |
- |
42.6441 |
596 |
4.6267 |
- |
- |
- |
- |
- |
- |
42.9153 |
597 |
4.5834 |
5.1446 |
0.0051 |
0.0057 |
0.0058 |
0.0052 |
0.0058 |
40.1356 |
598 |
6.7009 |
- |
- |
- |
- |
- |
- |
40.4068 |
599 |
12.2755 |
- |
- |
- |
- |
- |
- |
40.6780 |
600 |
12.4465 |
5.1447 |
0.0052 |
0.0057 |
0.0059 |
0.0052 |
0.0059 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}