File size: 149,980 Bytes
0992837 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 |
---
base_model: SQAI/bge-embedding-model
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1865
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: threshold.highLuxThreshold
sentences:
- '"Can you provide the timestamp of the last update to the threshold settings,
and detail any faults in the lux module related to light level sensing and control
for the streetlight on this specific street name? I also want to know the longitude
of the streetlight. And also, can you tell me what type of dimming schedule is
applied to the streetlight, the type of port used for its dimming controls, and
the total energy it has consumed, recorded in kilowatt-hours. Lastly, could you
also provide the timestamp of the recorded streetlighting error, and confirm the
status of the relay responsible for turning this streetlight on and off, as I
am suspecting it might be sticking?"'
- '"Can you provide me with the unique streetlight identifier, upper lux level for
managing light intensity, a brief description, and the delta or height of the
grid area occupied by a group of streetlights? Also, can you note the AC voltage
supply for these streetlights, any issues with communication related to their
lux sensors, and the count of how many times each streetlight has been switched
on? Please ensure that the data is constrained to just those that can be determined
with the unique streetlight identifier I provided."'
- '"What was the last recorded data or action timestamp of the streetlight located
at the specific longitude, and in which time zone is it situated? Could you also
provide information on its default dimming level and the maximum power usage threshold
above which indicates potential faults? Are there any identified faults in the
lux module impacting light level sensing and control? Additionally, what are the
minimum longitude and delta or height for the grid area occupied by this group
of streetlights and could you specify the network time received from the central
control for synchronization purposes?"'
- source_sentence: asset.geoZone
sentences:
- '"Could you check the status of the streetlight with the unique identifier, located
on the named street, specifically looking at any records of complete loss of power
which could indicate supply issues or damage? Also, could you provide details
on the instances where the voltage under load is lower than expected, as well
as instances of lower than expected power consumption, which could signal potential
electrical or hardware issues? I''m also interested in understanding if there
are any faults in our link control mechanism managing multiple streetlights. Additionally,
could you tell me the current drawn by this specific streetlight when it was lower
than expected and the current dimming level of the streetlight in operation? Lastly,
could you specify the maximum safe voltage under load conditions for this light
and verify whether its broadcast subscription used for receiving control signals
is doing fine?"'
- '"Can you provide me with the details regarding a specific streetlight on Main
Street, particularly the minimum current level below which it''s considered abnormal,
its power factor indicating efficient power usage, total operational hours logged,
any incidences where power consumption was higher than expected possibly due to
potential faults, its geoZone, X-coordinate in the grid layout, minimum operational
voltage under load conditions, minimum load current that indicates suboptimal
performance, and the timestamp of the last update made to the threshold settings?"'
- '"What is the width and height of the grid area occupied by the group of streetlights,
type of port used for dimming controls, power consumption levels, and what is
the safety of the current exceeded on the streetlight? Besides, could you explain
the high power factor indicating potential overloads or capacitive imbalances?"'
- source_sentence: errors.deviceId
sentences:
- '"Can you show me a report of all the streetlights with a unique identifier, which
have an internal temperature indicating abnormal operating conditions such as
voltage supplied being below the safe level, and operating temperature below expected
limit possibly due to environmental conditions? Can this report also include instances
of faults in link control mechanism managing multiple streetlights and cases of
open circuit in the relay preventing normal operation?"'
- '"Could you provide information about the streetlight on ''specific street name'',
specifically concerning its current drawn which appears to be lower than expected,
potential issues in the link control mechanism that manages multiple streetlights,
whether its operating temperature exceeds safe limits thus risking damage, and
if its power output is lower than expected? Also, could you let me know at what
interval this streetlight sends data reports and inform about any other issues
detected, particularly when the current is below the expected range?"'
- '"What is the minimum power usage level below which it is considered abnormal
for our ''Main Street Lamps'' group of streetlights, which are described as a
series of LED lamps installed along the main town stretch, and what could be the
reasons if the power consumption is lower than expected, possibly due to hardware
issues? Also, could you give me the description on what means when intermittent
flashing of the streetlight occurs, indicating instability and tell me about the
strength of the wireless signal received by the streetlight''s communication module.
Could you confirm what control mode switch identifier we should use for changing
streetlight settings and the highest power factor that is considered optimal for
streetlight efficiency? Additionally, we discovered issues with group management
of streetlights via our central control system, and we would like to know the
time taken for the streetlight to activate or light up from the command."'
- source_sentence: threshold.lowLoadVoltage
sentences:
- '"Could you please show me the latest data recorded or action performed by the
streetlight, specifically highlighting the control mode switch identifier used
for changing its settings, the type of DALI dimming protocol it uses, and the
type of port used for its dimming controls? Furthermore, has there been any intermittent
flashing indicating instability? Also, could you provide data on its minimum operational
voltage under load conditions, and let me know if its power consumption is lower
than expected due to potential hardware issues?"
'
- '"Can the operator managing the streetlight provide the timestamp of the latest
data recorded or action performed by the streetlight, details on the minimum operational
voltage under load conditions, the current issues with the driver that powers
and controls the streetlight, why the power output is lower than expected for
the streetlight, and what is the maximum latitude of the geographic area covered
by this group of streetlights?"'
- '"Can you provide a report that shows all the streetlights in a grid layout with
Y-coordinate information, indicating whether their control mode setting is on
automated or manual, their minimum current level, and instances of communication
issues between the streetlight''s driver and the control system, as well as instances
when the operating temperature fell below expected limits, possibly due to environmental
conditions?"'
- source_sentence: errors.controllerFault.lowLoadCurrent
sentences:
- '"Can you provide me with the current status of the streetlight on ''street name'',
specifically in relation to its voltage under load, whether it''s lower than expected
and how that might be indicating potential electrical issues? Could you also give
me insight into the current drawn by the streetlight, whether or not the relay
is currently on or off, and if there are any faults in the lux module that may
affect light level sensing and control? Moreover, could you tell me the type of
dimming schedule applied, the ambient light level detected in lux, the total energy
consumed so far recorded in kilowatt-hours, and the lower voltage threshold for
this streetlight''s efficient operation?"'
- '"Can you provide a detailed report for the streetlight on [Name of the street
for the streetlight in error]? The report should include the timestamp of the
last recorded error, synchronization time received from the central control, the
dimming schedule type we''re currently using, and both minimum operational and
maximum safe voltage under load conditions. Also, indicate the time of the last
action was recorded and if there are any reported faults in the metering components
affecting data reporting. Can you also specify the port type used for dimming
controls and whether the power consumption has been unusually low due to potential
hardware issues?"'
- '"Can you show me the current status of the relay in the streetlights located
at the X-coordinate grid, highlighting any faults in the lux module that might
be affecting light level sensing and control? Also, could you provide information
on the current dimming level of these streetlights in operation, the type of dimming
schedule applied, and whether the voltage is within the upper limit considered
safe and efficient for their operation?"'
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.014423076923076924
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0014423076923076926
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.014423076923076924
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.004284253930989665
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.001549145299145299
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.005857063109582476
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.014423076923076924
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0014423076923076926
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.014423076923076924
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.004284253930989665
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.001549145299145299
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.005857063109582476
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.014423076923076924
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0014423076923076926
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.014423076923076924
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0043536523979211435
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.0016159188034188035
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.005708010488423065
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.009615384615384616
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0009615384615384616
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.009615384615384616
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0030498236971024735
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.001221001221001221
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.005185692544152747
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.019230769230769232
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0019230769230769232
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.019230769230769232
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.005956216500485246
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.0023027319902319903
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.0051874402718147935
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [SQAI/bge-embedding-model](https://huggingface.co/SQAI/bge-embedding-model). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [SQAI/bge-embedding-model](https://huggingface.co/SQAI/bge-embedding-model) <!-- at revision 9a9bc3f795ddfc56610a621b37aa077ae0653fa4 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SQAI/bge-embedding-model2")
# Run inference
sentences = [
'errors.controllerFault.lowLoadCurrent',
'"Can you provide me with the current status of the streetlight on \'street name\', specifically in relation to its voltage under load, whether it\'s lower than expected and how that might be indicating potential electrical issues? Could you also give me insight into the current drawn by the streetlight, whether or not the relay is currently on or off, and if there are any faults in the lux module that may affect light level sensing and control? Moreover, could you tell me the type of dimming schedule applied, the ambient light level detected in lux, the total energy consumed so far recorded in kilowatt-hours, and the lower voltage threshold for this streetlight\'s efficient operation?"',
'"Can you show me the current status of the relay in the streetlights located at the X-coordinate grid, highlighting any faults in the lux module that might be affecting light level sensing and control? Also, could you provide information on the current dimming level of these streetlights in operation, the type of dimming schedule applied, and whether the voltage is within the upper limit considered safe and efficient for their operation?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.0144 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.0014 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.0144 |
| cosine_ndcg@10 | 0.0043 |
| cosine_mrr@10 | 0.0015 |
| **cosine_map@100** | **0.0059** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.0144 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.0014 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.0144 |
| cosine_ndcg@10 | 0.0043 |
| cosine_mrr@10 | 0.0015 |
| **cosine_map@100** | **0.0059** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.0144 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.0014 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.0144 |
| cosine_ndcg@10 | 0.0044 |
| cosine_mrr@10 | 0.0016 |
| **cosine_map@100** | **0.0057** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.0096 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.001 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.0096 |
| cosine_ndcg@10 | 0.003 |
| cosine_mrr@10 | 0.0012 |
| **cosine_map@100** | **0.0052** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.0192 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.0019 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.0192 |
| cosine_ndcg@10 | 0.006 |
| cosine_mrr@10 | 0.0023 |
| **cosine_map@100** | **0.0052** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,865 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 7.68 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 89.79 tokens</li><li>max: 187 tokens</li></ul> |
* Samples:
| positive | anchor |
|:----------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>threshold.lowLoadVoltage</code> | <code>"What is the maximum current level above which it is considered unsafe for a specific streetlight in my area, what is the minimum longitude of the geographic area this streetlight covers, is this streetlight's control mode automated or manually controlled, also, can you provide the delta or width of the grid area occupied by this group of streetlights, what is the level of AC voltage supply to this streetlight, what's the lower voltage threshold below which this streetlight may not operate efficiently, how many times has this streetlight been switched on, what is the minimum operational voltage under load conditions, and finally, what is the latitude of this streetlight?"</code> |
| <code>asset.id</code> | <code>"Could you please tell me the scheduled dimming settings for the string stored streetlights, troubleshoot why these streetlights remain on during daylight hours, and confirm if this could be due to sensor faults? Also, I'd like to know the identifier for the parent group to which this group of streetlights belongs, and the IMEI number of the streetlight device."</code> |
| <code>errors.controllerFault.highPower</code> | <code>"Can you provide an analysis of the efficiency of power usage by examining the power factor of the streetlights, especially in areas of the grid with high Y-coordinates, highlight instances where power consumption is significantly higher than expected which may indicate faults, identify situations where voltage under load is above safe levels, and assess if there are any problems with our central control system's ability to manage streetlight groups?"</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 208 evaluation samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 7.55 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 90.69 tokens</li><li>max: 187 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>log.controlModeSwitch</code> | <code>"Can you provide the control mode switch identifier used for changing the default dimming level set for a specific group of streetlights, identified by their unique identifier, considering the time taken for the streetlight to activate or light up from the command, and possibly troubleshoot why the power consumption is lower than expected which could be due to hardware issues, quite possibly due to the relay responsible for turning the streetlight on and off sticking?"</code> |
| <code>errors.controllerFault.luxModuleFault</code> | <code>"Can you provide the timestamp of the last update to the threshold settings, and detail any faults in the lux module related to light level sensing and control for the streetlight on this specific street name? I also want to know the longitude of the streetlight. And also, can you tell me what type of dimming schedule is applied to the streetlight, the type of port used for its dimming controls, and the total energy it has consumed, recorded in kilowatt-hours. Lastly, could you also provide the timestamp of the recorded streetlighting error, and confirm the status of the relay responsible for turning this streetlight on and off, as I am suspecting it might be sticking?"</code> |
| <code>threshold.lowLoadCurrent</code> | <code>"What is the maximum safe voltage under load conditions for the city's streetlights, and do we possess the necessary rights to link these streetlights for synchronized control? Could you provide me with the timestamp of the latest data or action performed by our streetlights, and tell me the lower lux level threshold at which we would need to consider additional lighting? How often does each streetlight send a data report in normal operation, and what is the minimum load current level where we might start seeing suboptimal functioning? Have we been experiencing any problems with managing groups of streetlights via the central control system? Also, has there been any instances where the current under load was excessively high, indicating possible overloads, or situations where the operation temperature was belo normal limits due to environmental conditions? Lastly, have there been any noted communication issues between the streetlight's driver and the control system?"</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-06
- `weight_decay`: 0.03
- `num_train_epochs`: 200
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-06
- `weight_decay`: 0.03
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 200
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.2712 | 1 | 13.2713 | - | - | - | - | - | - |
| 0.5424 | 2 | 13.2895 | - | - | - | - | - | - |
| 0.8136 | 3 | 9.9139 | - | - | - | - | - | - |
| 1.0847 | 4 | 5.6117 | - | - | - | - | - | - |
| 1.3559 | 5 | 4.7571 | - | - | - | - | - | - |
| 1.6271 | 6 | 5.5215 | - | - | - | - | - | - |
| 1.8983 | 7 | 5.7945 | - | - | - | - | - | - |
| 2.1695 | 8 | 5.7064 | - | - | - | - | - | - |
| 2.4407 | 9 | 5.6794 | - | - | - | - | - | - |
| 2.7119 | 10 | 5.7384 | - | - | - | - | - | - |
| 2.9831 | 11 | 5.6081 | - | - | - | - | - | - |
| 3.2542 | 12 | 5.5278 | - | - | - | - | - | - |
| 3.5254 | 13 | 5.149 | - | - | - | - | - | - |
| 3.7966 | 14 | 5.5904 | 5.6043 | 0.0081 | 0.0072 | 0.0079 | 0.0055 | 0.0079 |
| 1.0169 | 15 | 3.9458 | - | - | - | - | - | - |
| 1.2881 | 16 | 13.3653 | - | - | - | - | - | - |
| 1.5593 | 17 | 13.4413 | - | - | - | - | - | - |
| 1.8305 | 18 | 9.4188 | - | - | - | - | - | - |
| 2.1017 | 19 | 5.717 | - | - | - | - | - | - |
| 2.3729 | 20 | 5.2455 | - | - | - | - | - | - |
| 2.6441 | 21 | 5.2117 | - | - | - | - | - | - |
| 2.9153 | 22 | 5.5217 | - | - | - | - | - | - |
| 3.1864 | 23 | 5.6725 | - | - | - | - | - | - |
| 3.4576 | 24 | 5.786 | - | - | - | - | - | - |
| 3.7288 | 25 | 5.6507 | - | - | - | - | - | - |
| 4.0 | 26 | 5.7215 | - | - | - | - | - | - |
| 4.2712 | 27 | 5.3999 | - | - | - | - | - | - |
| 4.5424 | 28 | 5.4275 | - | - | - | - | - | - |
| 4.8136 | 29 | 5.7143 | 5.5718 | 0.0082 | 0.0071 | 0.0077 | 0.0052 | 0.0077 |
| 2.0339 | 30 | 4.478 | - | - | - | - | - | - |
| 2.3051 | 31 | 13.1821 | - | - | - | - | - | - |
| 2.5763 | 32 | 13.2473 | - | - | - | - | - | - |
| 2.8475 | 33 | 8.8654 | - | - | - | - | - | - |
| 3.1186 | 34 | 5.3181 | - | - | - | - | - | - |
| 3.3898 | 35 | 5.2091 | - | - | - | - | - | - |
| 3.6610 | 36 | 5.6027 | - | - | - | - | - | - |
| 3.9322 | 37 | 5.6839 | - | - | - | - | - | - |
| 4.2034 | 38 | 5.5955 | - | - | - | - | - | - |
| 4.4746 | 39 | 5.5786 | - | - | - | - | - | - |
| 4.7458 | 40 | 5.4509 | - | - | - | - | - | - |
| 5.0169 | 41 | 5.3361 | - | - | - | - | - | - |
| 5.2881 | 42 | 5.1608 | - | - | - | - | - | - |
| 5.5593 | 43 | 5.4896 | - | - | - | - | - | - |
| 5.8305 | 44 | 5.6466 | 5.5241 | 0.0062 | 0.0070 | 0.0076 | 0.0095 | 0.0076 |
| 3.0508 | 45 | 4.5617 | - | - | - | - | - | - |
| 3.3220 | 46 | 13.0665 | - | - | - | - | - | - |
| 3.5932 | 47 | 13.1848 | - | - | - | - | - | - |
| 3.8644 | 48 | 8.4053 | - | - | - | - | - | - |
| 4.1356 | 49 | 5.2706 | - | - | - | - | - | - |
| 4.4068 | 50 | 5.4269 | - | - | - | - | - | - |
| 4.6780 | 51 | 5.3645 | - | - | - | - | - | - |
| 4.9492 | 52 | 5.3587 | - | - | - | - | - | - |
| 5.2203 | 53 | 5.1047 | - | - | - | - | - | - |
| 5.4915 | 54 | 5.743 | - | - | - | - | - | - |
| 5.7627 | 55 | 5.3754 | - | - | - | - | - | - |
| 6.0339 | 56 | 5.3021 | - | - | - | - | - | - |
| 6.3051 | 57 | 5.6983 | - | - | - | - | - | - |
| 6.5763 | 58 | 5.302 | - | - | - | - | - | - |
| 6.8475 | 59 | 5.4545 | 5.4638 | 0.0060 | 0.0070 | 0.0077 | 0.0094 | 0.0077 |
| 4.0678 | 60 | 5.2213 | - | - | - | - | - | - |
| 4.3390 | 61 | 12.9854 | - | - | - | - | - | - |
| 4.6102 | 62 | 13.207 | - | - | - | - | - | - |
| 4.8814 | 63 | 7.7493 | - | - | - | - | - | - |
| 5.1525 | 64 | 5.3787 | - | - | - | - | - | - |
| 5.4237 | 65 | 4.9406 | - | - | - | - | - | - |
| 5.6949 | 66 | 5.3963 | - | - | - | - | - | - |
| 5.9661 | 67 | 5.3429 | - | - | - | - | - | - |
| 6.2373 | 68 | 5.292 | - | - | - | - | - | - |
| 6.5085 | 69 | 5.6738 | - | - | - | - | - | - |
| 6.7797 | 70 | 5.5927 | - | - | - | - | - | - |
| 7.0508 | 71 | 5.5245 | - | - | - | - | - | - |
| 7.3220 | 72 | 4.8334 | - | - | - | - | - | - |
| 7.5932 | 73 | 5.2015 | - | - | - | - | - | - |
| 7.8644 | 74 | 5.5393 | 5.3954 | 0.0060 | 0.0071 | 0.0078 | 0.0094 | 0.0078 |
| 5.0847 | 75 | 5.6168 | - | - | - | - | - | - |
| 5.3559 | 76 | 12.8678 | - | - | - | - | - | - |
| 5.6271 | 77 | 13.2377 | - | - | - | - | - | - |
| 5.8983 | 78 | 7.1882 | - | - | - | - | - | - |
| 6.1695 | 79 | 5.1293 | - | - | - | - | - | - |
| 6.4407 | 80 | 4.9413 | - | - | - | - | - | - |
| 6.7119 | 81 | 5.1763 | - | - | - | - | - | - |
| 6.9831 | 82 | 4.9512 | - | - | - | - | - | - |
| 7.2542 | 83 | 5.2744 | - | - | - | - | - | - |
| 7.5254 | 84 | 5.0573 | - | - | - | - | - | - |
| 7.7966 | 85 | 5.1938 | - | - | - | - | - | - |
| 8.0678 | 86 | 5.1514 | - | - | - | - | - | - |
| 8.3390 | 87 | 4.9808 | - | - | - | - | - | - |
| 8.6102 | 88 | 4.9983 | - | - | - | - | - | - |
| **8.8814** | **89** | **5.3211** | **5.3268** | **0.0062** | **0.0067** | **0.0075** | **0.0095** | **0.0075** |
| 6.1017 | 90 | 6.1513 | - | - | - | - | - | - |
| 6.3729 | 91 | 12.7972 | - | - | - | - | - | - |
| 6.6441 | 92 | 13.0051 | - | - | - | - | - | - |
| 6.9153 | 93 | 6.551 | - | - | - | - | - | - |
| 7.1864 | 94 | 4.6644 | - | - | - | - | - | - |
| 7.4576 | 95 | 4.8619 | - | - | - | - | - | - |
| 7.7288 | 96 | 5.0812 | - | - | - | - | - | - |
| 8.0 | 97 | 4.758 | - | - | - | - | - | - |
| 8.2712 | 98 | 5.1362 | - | - | - | - | - | - |
| 8.5424 | 99 | 5.5405 | - | - | - | - | - | - |
| 8.8136 | 100 | 5.228 | - | - | - | - | - | - |
| 9.0847 | 101 | 5.1084 | - | - | - | - | - | - |
| 9.3559 | 102 | 5.1574 | - | - | - | - | - | - |
| 9.6271 | 103 | 5.3326 | - | - | - | - | - | - |
| 9.8983 | 104 | 5.34 | 5.2658 | 0.0060 | 0.0066 | 0.0076 | 0.0052 | 0.0076 |
| 7.1186 | 105 | 6.5789 | - | - | - | - | - | - |
| 7.3898 | 106 | 12.7557 | - | - | - | - | - | - |
| 7.6610 | 107 | 13.0203 | - | - | - | - | - | - |
| 7.9322 | 108 | 5.7148 | - | - | - | - | - | - |
| 8.2034 | 109 | 4.7945 | - | - | - | - | - | - |
| 8.4746 | 110 | 4.5926 | - | - | - | - | - | - |
| 8.7458 | 111 | 4.6727 | - | - | - | - | - | - |
| 9.0169 | 112 | 5.0886 | - | - | - | - | - | - |
| 9.2881 | 113 | 5.0562 | - | - | - | - | - | - |
| 9.5593 | 114 | 5.2167 | - | - | - | - | - | - |
| 9.8305 | 115 | 5.048 | - | - | - | - | - | - |
| 10.1017 | 116 | 4.7765 | - | - | - | - | - | - |
| 10.3729 | 117 | 4.9875 | - | - | - | - | - | - |
| 10.6441 | 118 | 4.9501 | - | - | - | - | - | - |
| 10.9153 | 119 | 4.756 | 5.2124 | 0.0057 | 0.0065 | 0.0075 | 0.0054 | 0.0075 |
| 8.1356 | 120 | 6.9381 | - | - | - | - | - | - |
| 8.4068 | 121 | 12.7916 | - | - | - | - | - | - |
| 8.6780 | 122 | 12.8517 | - | - | - | - | - | - |
| 8.9492 | 123 | 5.51 | - | - | - | - | - | - |
| 9.2203 | 124 | 4.686 | - | - | - | - | - | - |
| 9.4915 | 125 | 4.6611 | - | - | - | - | - | - |
| 9.7627 | 126 | 5.2767 | - | - | - | - | - | - |
| 10.0339 | 127 | 4.6103 | - | - | - | - | - | - |
| 10.3051 | 128 | 4.957 | - | - | - | - | - | - |
| 10.5763 | 129 | 5.0236 | - | - | - | - | - | - |
| 10.8475 | 130 | 5.0894 | - | - | - | - | - | - |
| 11.1186 | 131 | 4.7025 | - | - | - | - | - | - |
| 11.3898 | 132 | 5.0765 | - | - | - | - | - | - |
| 11.6610 | 133 | 4.6601 | - | - | - | - | - | - |
| 11.9322 | 134 | 4.9064 | 5.1731 | 0.0056 | 0.0060 | 0.0070 | 0.0054 | 0.0070 |
| 9.1525 | 135 | 7.5884 | - | - | - | - | - | - |
| 9.4237 | 136 | 12.679 | - | - | - | - | - | - |
| 9.6949 | 137 | 12.417 | - | - | - | - | - | - |
| 9.9661 | 138 | 5.1632 | - | - | - | - | - | - |
| 10.2373 | 139 | 4.9486 | - | - | - | - | - | - |
| 10.5085 | 140 | 4.6341 | - | - | - | - | - | - |
| 10.7797 | 141 | 4.9664 | - | - | - | - | - | - |
| 11.0508 | 142 | 4.9567 | - | - | - | - | - | - |
| 11.3220 | 143 | 4.7532 | - | - | - | - | - | - |
| 11.5932 | 144 | 5.2556 | - | - | - | - | - | - |
| 11.8644 | 145 | 4.9652 | - | - | - | - | - | - |
| 12.1356 | 146 | 4.8118 | - | - | - | - | - | - |
| 12.4068 | 147 | 4.704 | - | - | - | - | - | - |
| 12.6780 | 148 | 4.8922 | - | - | - | - | - | - |
| 12.9492 | 149 | 4.6571 | 5.1441 | 0.0061 | 0.0055 | 0.0064 | 0.0053 | 0.0064 |
| 10.1695 | 150 | 8.1284 | - | - | - | - | - | - |
| 10.4407 | 151 | 12.5703 | - | - | - | - | - | - |
| 10.7119 | 152 | 11.8696 | - | - | - | - | - | - |
| 10.9831 | 153 | 4.8543 | - | - | - | - | - | - |
| 11.2542 | 154 | 4.8099 | - | - | - | - | - | - |
| 11.5254 | 155 | 4.7009 | - | - | - | - | - | - |
| 11.7966 | 156 | 4.7986 | - | - | - | - | - | - |
| 12.0678 | 157 | 4.7973 | - | - | - | - | - | - |
| 12.3390 | 158 | 4.5529 | - | - | - | - | - | - |
| 12.6102 | 159 | 5.0275 | - | - | - | - | - | - |
| 12.8814 | 160 | 4.6675 | - | - | - | - | - | - |
| 13.1525 | 161 | 4.6538 | - | - | - | - | - | - |
| 13.4237 | 162 | 4.8355 | - | - | - | - | - | - |
| 13.6949 | 163 | 4.6304 | - | - | - | - | - | - |
| 13.9661 | 164 | 4.7047 | 5.1242 | 0.0064 | 0.0054 | 0.0064 | 0.0095 | 0.0064 |
| 11.1864 | 165 | 8.6549 | - | - | - | - | - | - |
| 11.4576 | 166 | 12.4788 | - | - | - | - | - | - |
| 11.7288 | 167 | 11.6425 | - | - | - | - | - | - |
| 12.0 | 168 | 4.5654 | - | - | - | - | - | - |
| 12.2712 | 169 | 4.7016 | - | - | - | - | - | - |
| 12.5424 | 170 | 4.3306 | - | - | - | - | - | - |
| 12.8136 | 171 | 4.9692 | - | - | - | - | - | - |
| 13.0847 | 172 | 4.7557 | - | - | - | - | - | - |
| 13.3559 | 173 | 4.8665 | - | - | - | - | - | - |
| 13.6271 | 174 | 4.8338 | - | - | - | - | - | - |
| 13.8983 | 175 | 4.9221 | - | - | - | - | - | - |
| 14.1695 | 176 | 4.4968 | - | - | - | - | - | - |
| 14.4407 | 177 | 4.6104 | - | - | - | - | - | - |
| 14.7119 | 178 | 4.8449 | - | - | - | - | - | - |
| 14.9831 | 179 | 4.2392 | 5.1123 | 0.0059 | 0.0055 | 0.0065 | 0.0094 | 0.0065 |
| 12.2034 | 180 | 9.4893 | - | - | - | - | - | - |
| 12.4746 | 181 | 12.4241 | - | - | - | - | - | - |
| 12.7458 | 182 | 11.0389 | - | - | - | - | - | - |
| 13.0169 | 183 | 4.7595 | - | - | - | - | - | - |
| 13.2881 | 184 | 4.5408 | - | - | - | - | - | - |
| 13.5593 | 185 | 4.6108 | - | - | - | - | - | - |
| 13.8305 | 186 | 4.5832 | - | - | - | - | - | - |
| 14.1017 | 187 | 4.6741 | - | - | - | - | - | - |
| 14.3729 | 188 | 4.9353 | - | - | - | - | - | - |
| 14.6441 | 189 | 5.0511 | - | - | - | - | - | - |
| 14.9153 | 190 | 4.6575 | - | - | - | - | - | - |
| 15.1864 | 191 | 4.648 | - | - | - | - | - | - |
| 15.4576 | 192 | 4.6224 | - | - | - | - | - | - |
| 15.7288 | 193 | 4.9292 | - | - | - | - | - | - |
| 16.0 | 194 | 3.7805 | 5.1058 | 0.0063 | 0.0057 | 0.0062 | 0.0094 | 0.0062 |
| 13.2203 | 195 | 10.2695 | - | - | - | - | - | - |
| 13.4915 | 196 | 12.5043 | - | - | - | - | - | - |
| 13.7627 | 197 | 10.4795 | - | - | - | - | - | - |
| 14.0339 | 198 | 4.6901 | - | - | - | - | - | - |
| 14.3051 | 199 | 4.6538 | - | - | - | - | - | - |
| 14.5763 | 200 | 4.4736 | - | - | - | - | - | - |
| 14.8475 | 201 | 4.4383 | - | - | - | - | - | - |
| 15.1186 | 202 | 5.0382 | - | - | - | - | - | - |
| 15.3898 | 203 | 4.5636 | - | - | - | - | - | - |
| 15.6610 | 204 | 4.8089 | - | - | - | - | - | - |
| 15.9322 | 205 | 4.4746 | - | - | - | - | - | - |
| 16.2034 | 206 | 4.5876 | - | - | - | - | - | - |
| 16.4746 | 207 | 4.4972 | - | - | - | - | - | - |
| 16.7458 | 208 | 4.8569 | - | - | - | - | - | - |
| 17.0169 | 209 | 3.5883 | 5.1031 | 0.0059 | 0.0057 | 0.0061 | 0.0095 | 0.0061 |
| 14.2373 | 210 | 10.8988 | - | - | - | - | - | - |
| 14.5085 | 211 | 12.4944 | - | - | - | - | - | - |
| 14.7797 | 212 | 10.1041 | - | - | - | - | - | - |
| 15.0508 | 213 | 4.8811 | - | - | - | - | - | - |
| 15.3220 | 214 | 4.6292 | - | - | - | - | - | - |
| 15.5932 | 215 | 4.4828 | - | - | - | - | - | - |
| 15.8644 | 216 | 4.7588 | - | - | - | - | - | - |
| 16.1356 | 217 | 4.26 | - | - | - | - | - | - |
| 16.4068 | 218 | 4.9124 | - | - | - | - | - | - |
| 16.6780 | 219 | 4.8098 | - | - | - | - | - | - |
| 16.9492 | 220 | 4.4439 | - | - | - | - | - | - |
| 17.2203 | 221 | 4.4824 | - | - | - | - | - | - |
| 17.4915 | 222 | 4.7771 | - | - | - | - | - | - |
| 17.7627 | 223 | 4.5966 | - | - | - | - | - | - |
| 18.0339 | 224 | 3.1409 | 5.1009 | 0.0055 | 0.0057 | 0.0062 | 0.0052 | 0.0062 |
| 15.2542 | 225 | 11.657 | - | - | - | - | - | - |
| 15.5254 | 226 | 12.5032 | - | - | - | - | - | - |
| 15.7966 | 227 | 9.4495 | - | - | - | - | - | - |
| 16.0678 | 228 | 4.7099 | - | - | - | - | - | - |
| 16.3390 | 229 | 4.6049 | - | - | - | - | - | - |
| 16.6102 | 230 | 4.6311 | - | - | - | - | - | - |
| 16.8814 | 231 | 4.7562 | - | - | - | - | - | - |
| 17.1525 | 232 | 4.7195 | - | - | - | - | - | - |
| 17.4237 | 233 | 4.8557 | - | - | - | - | - | - |
| 17.6949 | 234 | 4.8423 | - | - | - | - | - | - |
| 17.9661 | 235 | 4.5764 | - | - | - | - | - | - |
| 18.2373 | 236 | 4.5081 | - | - | - | - | - | - |
| 18.5085 | 237 | 4.7974 | - | - | - | - | - | - |
| 18.7797 | 238 | 4.871 | - | - | - | - | - | - |
| 19.0508 | 239 | 2.8558 | 5.1020 | 0.0054 | 0.0057 | 0.0061 | 0.0054 | 0.0061 |
| 16.2712 | 240 | 12.4297 | - | - | - | - | - | - |
| 16.5424 | 241 | 12.5186 | - | - | - | - | - | - |
| 16.8136 | 242 | 8.8827 | - | - | - | - | - | - |
| 17.0847 | 243 | 4.8406 | - | - | - | - | - | - |
| 17.3559 | 244 | 4.4367 | - | - | - | - | - | - |
| 17.6271 | 245 | 4.5996 | - | - | - | - | - | - |
| 17.8983 | 246 | 4.6692 | - | - | - | - | - | - |
| 18.1695 | 247 | 4.6498 | - | - | - | - | - | - |
| 18.4407 | 248 | 4.7211 | - | - | - | - | - | - |
| 18.7119 | 249 | 4.7675 | - | - | - | - | - | - |
| 18.9831 | 250 | 4.4405 | - | - | - | - | - | - |
| 19.2542 | 251 | 4.6778 | - | - | - | - | - | - |
| 19.5254 | 252 | 4.6674 | - | - | - | - | - | - |
| 19.7966 | 253 | 4.735 | 5.1036 | 0.0054 | 0.0056 | 0.0060 | 0.0054 | 0.0060 |
| 17.0169 | 254 | 3.6188 | - | - | - | - | - | - |
| 17.2881 | 255 | 12.4112 | - | - | - | - | - | - |
| 17.5593 | 256 | 12.5261 | - | - | - | - | - | - |
| 17.8305 | 257 | 8.3408 | - | - | - | - | - | - |
| 18.1017 | 258 | 4.6496 | - | - | - | - | - | - |
| 18.3729 | 259 | 4.7177 | - | - | - | - | - | - |
| 18.6441 | 260 | 4.7956 | - | - | - | - | - | - |
| 18.9153 | 261 | 4.7228 | - | - | - | - | - | - |
| 19.1864 | 262 | 4.6083 | - | - | - | - | - | - |
| 19.4576 | 263 | 4.7985 | - | - | - | - | - | - |
| 19.7288 | 264 | 4.6675 | - | - | - | - | - | - |
| 20.0 | 265 | 4.6353 | - | - | - | - | - | - |
| 20.2712 | 266 | 4.5717 | - | - | - | - | - | - |
| 20.5424 | 267 | 4.4358 | - | - | - | - | - | - |
| 20.8136 | 268 | 4.8288 | 5.1030 | 0.0056 | 0.0057 | 0.0062 | 0.0053 | 0.0062 |
| 18.0339 | 269 | 3.7877 | - | - | - | - | - | - |
| 18.3051 | 270 | 12.4042 | - | - | - | - | - | - |
| 18.5763 | 271 | 12.4793 | - | - | - | - | - | - |
| 18.8475 | 272 | 7.9475 | - | - | - | - | - | - |
| 19.1186 | 273 | 4.5502 | - | - | - | - | - | - |
| 19.3898 | 274 | 4.5565 | - | - | - | - | - | - |
| 19.6610 | 275 | 4.4172 | - | - | - | - | - | - |
| 19.9322 | 276 | 4.5319 | - | - | - | - | - | - |
| 20.2034 | 277 | 4.5635 | - | - | - | - | - | - |
| 20.4746 | 278 | 4.5233 | - | - | - | - | - | - |
| 20.7458 | 279 | 4.6766 | - | - | - | - | - | - |
| 21.0169 | 280 | 4.5863 | - | - | - | - | - | - |
| 21.2881 | 281 | 4.5784 | - | - | - | - | - | - |
| 21.5593 | 282 | 4.7198 | - | - | - | - | - | - |
| 21.8305 | 283 | 4.7383 | 5.1065 | 0.0054 | 0.0056 | 0.0061 | 0.0050 | 0.0061 |
| 19.0508 | 284 | 4.4257 | - | - | - | - | - | - |
| 19.3220 | 285 | 12.3475 | - | - | - | - | - | - |
| 19.5932 | 286 | 12.5168 | - | - | - | - | - | - |
| 19.8644 | 287 | 7.3671 | - | - | - | - | - | - |
| 20.1356 | 288 | 4.3771 | - | - | - | - | - | - |
| 20.4068 | 289 | 4.542 | - | - | - | - | - | - |
| 20.6780 | 290 | 4.3629 | - | - | - | - | - | - |
| 20.9492 | 291 | 4.5474 | - | - | - | - | - | - |
| 21.2203 | 292 | 4.7436 | - | - | - | - | - | - |
| 21.4915 | 293 | 4.5915 | - | - | - | - | - | - |
| 21.7627 | 294 | 4.5522 | - | - | - | - | - | - |
| 22.0339 | 295 | 4.6591 | - | - | - | - | - | - |
| 22.3051 | 296 | 4.6179 | - | - | - | - | - | - |
| 22.5763 | 297 | 4.6086 | - | - | - | - | - | - |
| 22.8475 | 298 | 4.8808 | 5.1083 | 0.0054 | 0.0057 | 0.0062 | 0.0055 | 0.0062 |
| 20.0678 | 299 | 4.7358 | - | - | - | - | - | - |
| 20.3390 | 300 | 12.3209 | - | - | - | - | - | - |
| 20.6102 | 301 | 12.6406 | - | - | - | - | - | - |
| 20.8814 | 302 | 6.7971 | - | - | - | - | - | - |
| 21.1525 | 303 | 4.3723 | - | - | - | - | - | - |
| 21.4237 | 304 | 4.61 | - | - | - | - | - | - |
| 21.6949 | 305 | 4.4624 | - | - | - | - | - | - |
| 21.9661 | 306 | 4.6145 | - | - | - | - | - | - |
| 22.2373 | 307 | 4.5794 | - | - | - | - | - | - |
| 22.5085 | 308 | 4.6625 | - | - | - | - | - | - |
| 22.7797 | 309 | 4.5499 | - | - | - | - | - | - |
| 23.0508 | 310 | 4.5657 | - | - | - | - | - | - |
| 23.3220 | 311 | 4.5896 | - | - | - | - | - | - |
| 23.5932 | 312 | 4.5692 | - | - | - | - | - | - |
| 23.8644 | 313 | 4.93 | 5.1119 | 0.0055 | 0.0057 | 0.0061 | 0.0056 | 0.0061 |
| 21.0847 | 314 | 5.3829 | - | - | - | - | - | - |
| 21.3559 | 315 | 12.3422 | - | - | - | - | - | - |
| 21.6271 | 316 | 12.601 | - | - | - | - | - | - |
| 21.8983 | 317 | 6.5062 | - | - | - | - | - | - |
| 22.1695 | 318 | 4.4681 | - | - | - | - | - | - |
| 22.4407 | 319 | 4.4244 | - | - | - | - | - | - |
| 22.7119 | 320 | 4.4514 | - | - | - | - | - | - |
| 22.9831 | 321 | 4.5469 | - | - | - | - | - | - |
| 23.2542 | 322 | 4.6924 | - | - | - | - | - | - |
| 23.5254 | 323 | 4.682 | - | - | - | - | - | - |
| 23.7966 | 324 | 4.6403 | - | - | - | - | - | - |
| 24.0678 | 325 | 4.6272 | - | - | - | - | - | - |
| 24.3390 | 326 | 4.3605 | - | - | - | - | - | - |
| 24.6102 | 327 | 4.5992 | - | - | - | - | - | - |
| 24.8814 | 328 | 4.6776 | 5.1126 | 0.0053 | 0.0057 | 0.0061 | 0.0056 | 0.0061 |
| 22.1017 | 329 | 5.8504 | - | - | - | - | - | - |
| 22.3729 | 330 | 12.335 | - | - | - | - | - | - |
| 22.6441 | 331 | 12.5779 | - | - | - | - | - | - |
| 22.9153 | 332 | 5.7261 | - | - | - | - | - | - |
| 23.1864 | 333 | 4.5411 | - | - | - | - | - | - |
| 23.4576 | 334 | 4.4783 | - | - | - | - | - | - |
| 23.7288 | 335 | 4.5589 | - | - | - | - | - | - |
| 24.0 | 336 | 4.6305 | - | - | - | - | - | - |
| 24.2712 | 337 | 4.674 | - | - | - | - | - | - |
| 24.5424 | 338 | 4.7455 | - | - | - | - | - | - |
| 24.8136 | 339 | 4.6011 | - | - | - | - | - | - |
| 25.0847 | 340 | 4.5899 | - | - | - | - | - | - |
| 25.3559 | 341 | 4.3981 | - | - | - | - | - | - |
| 25.6271 | 342 | 4.7031 | - | - | - | - | - | - |
| 25.8983 | 343 | 4.68 | 5.1182 | 0.0054 | 0.0057 | 0.0059 | 0.0056 | 0.0059 |
| 23.1186 | 344 | 6.3521 | - | - | - | - | - | - |
| 23.3898 | 345 | 12.2283 | - | - | - | - | - | - |
| 23.6610 | 346 | 12.533 | - | - | - | - | - | - |
| 23.9322 | 347 | 5.2654 | - | - | - | - | - | - |
| 24.2034 | 348 | 4.3667 | - | - | - | - | - | - |
| 24.4746 | 349 | 4.4718 | - | - | - | - | - | - |
| 24.7458 | 350 | 4.6212 | - | - | - | - | - | - |
| 25.0169 | 351 | 4.447 | - | - | - | - | - | - |
| 25.2881 | 352 | 4.6247 | - | - | - | - | - | - |
| 25.5593 | 353 | 5.0093 | - | - | - | - | - | - |
| 25.8305 | 354 | 4.6316 | - | - | - | - | - | - |
| 26.1017 | 355 | 4.6655 | - | - | - | - | - | - |
| 26.3729 | 356 | 4.5964 | - | - | - | - | - | - |
| 26.6441 | 357 | 4.682 | - | - | - | - | - | - |
| 26.9153 | 358 | 4.6375 | 5.1205 | 0.0051 | 0.0056 | 0.0059 | 0.0055 | 0.0059 |
| 24.1356 | 359 | 6.727 | - | - | - | - | - | - |
| 24.4068 | 360 | 12.3706 | - | - | - | - | - | - |
| 24.6780 | 361 | 12.4755 | - | - | - | - | - | - |
| 24.9492 | 362 | 4.623 | - | - | - | - | - | - |
| 25.2203 | 363 | 4.2947 | - | - | - | - | - | - |
| 25.4915 | 364 | 4.3993 | - | - | - | - | - | - |
| 25.7627 | 365 | 4.4148 | - | - | - | - | - | - |
| 26.0339 | 366 | 4.2376 | - | - | - | - | - | - |
| 26.3051 | 367 | 4.6334 | - | - | - | - | - | - |
| 26.5763 | 368 | 4.7007 | - | - | - | - | - | - |
| 26.8475 | 369 | 4.3542 | - | - | - | - | - | - |
| 27.1186 | 370 | 4.7036 | - | - | - | - | - | - |
| 27.3898 | 371 | 4.2382 | - | - | - | - | - | - |
| 27.6610 | 372 | 4.5011 | - | - | - | - | - | - |
| 27.9322 | 373 | 4.6292 | 5.1241 | 0.0051 | 0.0056 | 0.0059 | 0.0056 | 0.0059 |
| 25.1525 | 374 | 7.3562 | - | - | - | - | - | - |
| 25.4237 | 375 | 12.2926 | - | - | - | - | - | - |
| 25.6949 | 376 | 12.1694 | - | - | - | - | - | - |
| 25.9661 | 377 | 4.7183 | - | - | - | - | - | - |
| 26.2373 | 378 | 4.4099 | - | - | - | - | - | - |
| 26.5085 | 379 | 4.3366 | - | - | - | - | - | - |
| 26.7797 | 380 | 4.4848 | - | - | - | - | - | - |
| 27.0508 | 381 | 4.6947 | - | - | - | - | - | - |
| 27.3220 | 382 | 4.5683 | - | - | - | - | - | - |
| 27.5932 | 383 | 4.7691 | - | - | - | - | - | - |
| 27.8644 | 384 | 4.3879 | - | - | - | - | - | - |
| 28.1356 | 385 | 4.3461 | - | - | - | - | - | - |
| 28.4068 | 386 | 4.4756 | - | - | - | - | - | - |
| 28.6780 | 387 | 4.5355 | - | - | - | - | - | - |
| 28.9492 | 388 | 4.4837 | 5.1278 | 0.0052 | 0.0056 | 0.0059 | 0.0054 | 0.0059 |
| 26.1695 | 389 | 7.9407 | - | - | - | - | - | - |
| 26.4407 | 390 | 12.3054 | - | - | - | - | - | - |
| 26.7119 | 391 | 11.6158 | - | - | - | - | - | - |
| 26.9831 | 392 | 4.5724 | - | - | - | - | - | - |
| 27.2542 | 393 | 4.467 | - | - | - | - | - | - |
| 27.5254 | 394 | 4.4395 | - | - | - | - | - | - |
| 27.7966 | 395 | 4.4111 | - | - | - | - | - | - |
| 28.0678 | 396 | 4.5565 | - | - | - | - | - | - |
| 28.3390 | 397 | 4.6063 | - | - | - | - | - | - |
| 28.6102 | 398 | 4.5312 | - | - | - | - | - | - |
| 28.8814 | 399 | 4.5436 | - | - | - | - | - | - |
| 29.1525 | 400 | 4.5366 | - | - | - | - | - | - |
| 29.4237 | 401 | 4.4488 | - | - | - | - | - | - |
| 29.6949 | 402 | 4.5641 | - | - | - | - | - | - |
| 29.9661 | 403 | 4.2491 | 5.1303 | 0.0053 | 0.0057 | 0.0060 | 0.0055 | 0.0060 |
| 27.1864 | 404 | 8.574 | - | - | - | - | - | - |
| 27.4576 | 405 | 12.2836 | - | - | - | - | - | - |
| 27.7288 | 406 | 11.1935 | - | - | - | - | - | - |
| 28.0 | 407 | 4.5464 | - | - | - | - | - | - |
| 28.2712 | 408 | 4.3132 | - | - | - | - | - | - |
| 28.5424 | 409 | 4.3553 | - | - | - | - | - | - |
| 28.8136 | 410 | 4.4679 | - | - | - | - | - | - |
| 29.0847 | 411 | 4.7705 | - | - | - | - | - | - |
| 29.3559 | 412 | 4.5667 | - | - | - | - | - | - |
| 29.6271 | 413 | 4.6547 | - | - | - | - | - | - |
| 29.8983 | 414 | 4.6709 | - | - | - | - | - | - |
| 30.1695 | 415 | 4.784 | - | - | - | - | - | - |
| 30.4407 | 416 | 4.4368 | - | - | - | - | - | - |
| 30.7119 | 417 | 4.6159 | - | - | - | - | - | - |
| 30.9831 | 418 | 4.0117 | 5.1322 | 0.0050 | 0.0057 | 0.0059 | 0.0054 | 0.0059 |
| 28.2034 | 419 | 9.2905 | - | - | - | - | - | - |
| 28.4746 | 420 | 12.2439 | - | - | - | - | - | - |
| 28.7458 | 421 | 10.722 | - | - | - | - | - | - |
| 29.0169 | 422 | 4.6608 | - | - | - | - | - | - |
| 29.2881 | 423 | 4.5196 | - | - | - | - | - | - |
| 29.5593 | 424 | 4.4313 | - | - | - | - | - | - |
| 29.8305 | 425 | 4.513 | - | - | - | - | - | - |
| 30.1017 | 426 | 4.5812 | - | - | - | - | - | - |
| 30.3729 | 427 | 4.5275 | - | - | - | - | - | - |
| 30.6441 | 428 | 4.8022 | - | - | - | - | - | - |
| 30.9153 | 429 | 4.5171 | - | - | - | - | - | - |
| 31.1864 | 430 | 4.5968 | - | - | - | - | - | - |
| 31.4576 | 431 | 4.2145 | - | - | - | - | - | - |
| 31.7288 | 432 | 4.7041 | - | - | - | - | - | - |
| 32.0 | 433 | 3.6187 | 5.1356 | 0.0051 | 0.0057 | 0.0059 | 0.0055 | 0.0059 |
| 29.2203 | 434 | 10.0897 | - | - | - | - | - | - |
| 29.4915 | 435 | 12.2909 | - | - | - | - | - | - |
| 29.7627 | 436 | 10.1362 | - | - | - | - | - | - |
| 30.0339 | 437 | 4.5172 | - | - | - | - | - | - |
| 30.3051 | 438 | 4.3273 | - | - | - | - | - | - |
| 30.5763 | 439 | 4.5272 | - | - | - | - | - | - |
| 30.8475 | 440 | 4.376 | - | - | - | - | - | - |
| 31.1186 | 441 | 4.5803 | - | - | - | - | - | - |
| 31.3898 | 442 | 4.5654 | - | - | - | - | - | - |
| 31.6610 | 443 | 4.5024 | - | - | - | - | - | - |
| 31.9322 | 444 | 4.5889 | - | - | - | - | - | - |
| 32.2034 | 445 | 4.6489 | - | - | - | - | - | - |
| 32.4746 | 446 | 4.4505 | - | - | - | - | - | - |
| 32.7458 | 447 | 4.7026 | - | - | - | - | - | - |
| 33.0169 | 448 | 3.4719 | 5.1368 | 0.0050 | 0.0056 | 0.0059 | 0.0052 | 0.0059 |
| 30.2373 | 449 | 10.7633 | - | - | - | - | - | - |
| 30.5085 | 450 | 12.3203 | - | - | - | - | - | - |
| 30.7797 | 451 | 9.7535 | - | - | - | - | - | - |
| 31.0508 | 452 | 4.7462 | - | - | - | - | - | - |
| 31.3220 | 453 | 4.4271 | - | - | - | - | - | - |
| 31.5932 | 454 | 4.4347 | - | - | - | - | - | - |
| 31.8644 | 455 | 4.6443 | - | - | - | - | - | - |
| 32.1356 | 456 | 4.6344 | - | - | - | - | - | - |
| 32.4068 | 457 | 4.6518 | - | - | - | - | - | - |
| 32.6780 | 458 | 4.6437 | - | - | - | - | - | - |
| 32.9492 | 459 | 4.6168 | - | - | - | - | - | - |
| 33.2203 | 460 | 4.4948 | - | - | - | - | - | - |
| 33.4915 | 461 | 4.5268 | - | - | - | - | - | - |
| 33.7627 | 462 | 4.4844 | - | - | - | - | - | - |
| 34.0339 | 463 | 3.276 | 5.1384 | 0.0051 | 0.0057 | 0.0060 | 0.0053 | 0.0060 |
| 31.2542 | 464 | 11.5311 | - | - | - | - | - | - |
| 31.5254 | 465 | 12.3812 | - | - | - | - | - | - |
| 31.7966 | 466 | 9.1499 | - | - | - | - | - | - |
| 32.0678 | 467 | 4.7032 | - | - | - | - | - | - |
| 32.3390 | 468 | 4.2429 | - | - | - | - | - | - |
| 32.6102 | 469 | 4.549 | - | - | - | - | - | - |
| 32.8814 | 470 | 4.7083 | - | - | - | - | - | - |
| 33.1525 | 471 | 4.5348 | - | - | - | - | - | - |
| 33.4237 | 472 | 4.472 | - | - | - | - | - | - |
| 33.6949 | 473 | 4.5818 | - | - | - | - | - | - |
| 33.9661 | 474 | 4.5534 | - | - | - | - | - | - |
| 34.2373 | 475 | 4.5743 | - | - | - | - | - | - |
| 34.5085 | 476 | 4.54 | - | - | - | - | - | - |
| 34.7797 | 477 | 4.681 | - | - | - | - | - | - |
| 35.0508 | 478 | 2.9902 | 5.1397 | 0.0052 | 0.0057 | 0.0059 | 0.0053 | 0.0059 |
| 32.2712 | 479 | 12.3174 | - | - | - | - | - | - |
| 32.5424 | 480 | 12.2996 | - | - | - | - | - | - |
| 32.8136 | 481 | 8.7153 | - | - | - | - | - | - |
| 33.0847 | 482 | 4.5692 | - | - | - | - | - | - |
| 33.3559 | 483 | 4.3255 | - | - | - | - | - | - |
| 33.6271 | 484 | 4.4515 | - | - | - | - | - | - |
| 33.8983 | 485 | 4.6708 | - | - | - | - | - | - |
| 34.1695 | 486 | 4.2648 | - | - | - | - | - | - |
| 34.4407 | 487 | 4.6268 | - | - | - | - | - | - |
| 34.7119 | 488 | 4.703 | - | - | - | - | - | - |
| 34.9831 | 489 | 4.6269 | - | - | - | - | - | - |
| 35.2542 | 490 | 4.6464 | - | - | - | - | - | - |
| 35.5254 | 491 | 4.4952 | - | - | - | - | - | - |
| 35.7966 | 492 | 4.6097 | 5.1406 | 0.0052 | 0.0058 | 0.0058 | 0.0054 | 0.0058 |
| 33.0169 | 493 | 3.2718 | - | - | - | - | - | - |
| 33.2881 | 494 | 12.3329 | - | - | - | - | - | - |
| 33.5593 | 495 | 12.3503 | - | - | - | - | - | - |
| 33.8305 | 496 | 8.1544 | - | - | - | - | - | - |
| 34.1017 | 497 | 4.4684 | - | - | - | - | - | - |
| 34.3729 | 498 | 4.4062 | - | - | - | - | - | - |
| 34.6441 | 499 | 4.2644 | - | - | - | - | - | - |
| 34.9153 | 500 | 4.5294 | - | - | - | - | - | - |
| 35.1864 | 501 | 4.673 | - | - | - | - | - | - |
| 35.4576 | 502 | 4.4884 | - | - | - | - | - | - |
| 35.7288 | 503 | 4.5989 | - | - | - | - | - | - |
| 36.0 | 504 | 4.6182 | - | - | - | - | - | - |
| 36.2712 | 505 | 4.6487 | - | - | - | - | - | - |
| 36.5424 | 506 | 4.6436 | - | - | - | - | - | - |
| 36.8136 | 507 | 4.6059 | 5.1417 | 0.0051 | 0.0057 | 0.0059 | 0.0052 | 0.0059 |
| 34.0339 | 508 | 3.7589 | - | - | - | - | - | - |
| 34.3051 | 509 | 12.2815 | - | - | - | - | - | - |
| 34.5763 | 510 | 12.5481 | - | - | - | - | - | - |
| 34.8475 | 511 | 7.6339 | - | - | - | - | - | - |
| 35.1186 | 512 | 4.5528 | - | - | - | - | - | - |
| 35.3898 | 513 | 4.3266 | - | - | - | - | - | - |
| 35.6610 | 514 | 4.3093 | - | - | - | - | - | - |
| 35.9322 | 515 | 4.7401 | - | - | - | - | - | - |
| 36.2034 | 516 | 4.523 | - | - | - | - | - | - |
| 36.4746 | 517 | 4.5255 | - | - | - | - | - | - |
| 36.7458 | 518 | 4.5058 | - | - | - | - | - | - |
| 37.0169 | 519 | 4.5614 | - | - | - | - | - | - |
| 37.2881 | 520 | 4.5323 | - | - | - | - | - | - |
| 37.5593 | 521 | 4.5739 | - | - | - | - | - | - |
| 37.8305 | 522 | 4.6501 | 5.1427 | 0.0052 | 0.0058 | 0.0059 | 0.0053 | 0.0059 |
| 35.0508 | 523 | 4.2083 | - | - | - | - | - | - |
| 35.3220 | 524 | 12.2888 | - | - | - | - | - | - |
| 35.5932 | 525 | 12.4709 | - | - | - | - | - | - |
| 35.8644 | 526 | 7.3926 | - | - | - | - | - | - |
| 36.1356 | 527 | 4.4719 | - | - | - | - | - | - |
| 36.4068 | 528 | 4.5033 | - | - | - | - | - | - |
| 36.6780 | 529 | 4.388 | - | - | - | - | - | - |
| 36.9492 | 530 | 4.5606 | - | - | - | - | - | - |
| 37.2203 | 531 | 4.6936 | - | - | - | - | - | - |
| 37.4915 | 532 | 4.6008 | - | - | - | - | - | - |
| 37.7627 | 533 | 4.6973 | - | - | - | - | - | - |
| 38.0339 | 534 | 4.4194 | - | - | - | - | - | - |
| 38.3051 | 535 | 4.5616 | - | - | - | - | - | - |
| 38.5763 | 536 | 4.6307 | - | - | - | - | - | - |
| 38.8475 | 537 | 4.8322 | 5.1442 | 0.0051 | 0.0057 | 0.0059 | 0.0053 | 0.0059 |
| 36.0678 | 538 | 4.8388 | - | - | - | - | - | - |
| 36.3390 | 539 | 12.2334 | - | - | - | - | - | - |
| 36.6102 | 540 | 12.4205 | - | - | - | - | - | - |
| 36.8814 | 541 | 6.9051 | - | - | - | - | - | - |
| 37.1525 | 542 | 4.6011 | - | - | - | - | - | - |
| 37.4237 | 543 | 4.4701 | - | - | - | - | - | - |
| 37.6949 | 544 | 4.421 | - | - | - | - | - | - |
| 37.9661 | 545 | 4.6877 | - | - | - | - | - | - |
| 38.2373 | 546 | 4.6348 | - | - | - | - | - | - |
| 38.5085 | 547 | 4.5822 | - | - | - | - | - | - |
| 38.7797 | 548 | 4.5697 | - | - | - | - | - | - |
| 39.0508 | 549 | 4.3118 | - | - | - | - | - | - |
| 39.3220 | 550 | 4.5131 | - | - | - | - | - | - |
| 39.5932 | 551 | 4.4879 | - | - | - | - | - | - |
| 39.8644 | 552 | 4.5945 | 5.1429 | 0.0052 | 0.0056 | 0.0059 | 0.0054 | 0.0059 |
| 37.0847 | 553 | 5.4083 | - | - | - | - | - | - |
| 37.3559 | 554 | 12.2092 | - | - | - | - | - | - |
| 37.6271 | 555 | 12.5043 | - | - | - | - | - | - |
| 37.8983 | 556 | 6.1239 | - | - | - | - | - | - |
| 38.1695 | 557 | 4.2932 | - | - | - | - | - | - |
| 38.4407 | 558 | 4.3845 | - | - | - | - | - | - |
| 38.7119 | 559 | 4.5619 | - | - | - | - | - | - |
| 38.9831 | 560 | 4.6936 | - | - | - | - | - | - |
| 39.2542 | 561 | 4.6636 | - | - | - | - | - | - |
| 39.5254 | 562 | 4.7964 | - | - | - | - | - | - |
| 39.7966 | 563 | 4.613 | - | - | - | - | - | - |
| 40.0678 | 564 | 4.5856 | - | - | - | - | - | - |
| 40.3390 | 565 | 4.4605 | - | - | - | - | - | - |
| 40.6102 | 566 | 4.5461 | - | - | - | - | - | - |
| 40.8814 | 567 | 4.7145 | 5.1454 | 0.0052 | 0.0056 | 0.0059 | 0.0052 | 0.0059 |
| 38.1017 | 568 | 5.8311 | - | - | - | - | - | - |
| 38.3729 | 569 | 12.2142 | - | - | - | - | - | - |
| 38.6441 | 570 | 12.4489 | - | - | - | - | - | - |
| 38.9153 | 571 | 5.7328 | - | - | - | - | - | - |
| 39.1864 | 572 | 4.4402 | - | - | - | - | - | - |
| 39.4576 | 573 | 4.1806 | - | - | - | - | - | - |
| 39.7288 | 574 | 4.6327 | - | - | - | - | - | - |
| 40.0 | 575 | 4.2768 | - | - | - | - | - | - |
| 40.2712 | 576 | 4.4669 | - | - | - | - | - | - |
| 40.5424 | 577 | 4.8094 | - | - | - | - | - | - |
| 40.8136 | 578 | 4.5773 | - | - | - | - | - | - |
| 41.0847 | 579 | 4.439 | - | - | - | - | - | - |
| 41.3559 | 580 | 4.5718 | - | - | - | - | - | - |
| 41.6271 | 581 | 4.5955 | - | - | - | - | - | - |
| 41.8983 | 582 | 4.5043 | 5.1443 | 0.0051 | 0.0056 | 0.0059 | 0.0054 | 0.0059 |
| 39.1186 | 583 | 6.359 | - | - | - | - | - | - |
| 39.3898 | 584 | 12.212 | - | - | - | - | - | - |
| 39.6610 | 585 | 12.538 | - | - | - | - | - | - |
| 39.9322 | 586 | 5.0971 | - | - | - | - | - | - |
| 40.2034 | 587 | 4.4783 | - | - | - | - | - | - |
| 40.4746 | 588 | 4.394 | - | - | - | - | - | - |
| 40.7458 | 589 | 4.4847 | - | - | - | - | - | - |
| 41.0169 | 590 | 4.4116 | - | - | - | - | - | - |
| 41.2881 | 591 | 4.3979 | - | - | - | - | - | - |
| 41.5593 | 592 | 4.6652 | - | - | - | - | - | - |
| 41.8305 | 593 | 4.3939 | - | - | - | - | - | - |
| 42.1017 | 594 | 4.5555 | - | - | - | - | - | - |
| 42.3729 | 595 | 4.4966 | - | - | - | - | - | - |
| 42.6441 | 596 | 4.6267 | - | - | - | - | - | - |
| 42.9153 | 597 | 4.5834 | 5.1446 | 0.0051 | 0.0057 | 0.0058 | 0.0052 | 0.0058 |
| 40.1356 | 598 | 6.7009 | - | - | - | - | - | - |
| 40.4068 | 599 | 12.2755 | - | - | - | - | - | - |
| 40.6780 | 600 | 12.4465 | 5.1447 | 0.0052 | 0.0057 | 0.0059 | 0.0052 | 0.0059 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |