Model3_Marabertv2_T2_WS_A100

This model is a fine-tuned version of UBC-NLP/MARBERTv2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0795
  • F1: 0.8271
  • Roc Auc: 0.9092
  • Accuracy: 0.7430

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 193 0.1589 0.5089 0.6835 0.3687
No log 2.0 386 0.1122 0.6879 0.7800 0.5680
0.1646 3.0 579 0.0932 0.7846 0.8623 0.6816
0.1646 4.0 772 0.0793 0.8138 0.8823 0.7318
0.1646 5.0 965 0.0916 0.7893 0.8787 0.6965
0.0598 6.0 1158 0.0739 0.8251 0.8935 0.7318
0.0598 7.0 1351 0.0752 0.8257 0.9002 0.7393
0.0266 8.0 1544 0.0800 0.8350 0.9128 0.7467
0.0266 9.0 1737 0.0810 0.8295 0.9123 0.7430
0.0266 10.0 1930 0.0795 0.8271 0.9092 0.7430

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
25
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SMG0/Model3_Marabertv2_T2_WS_A100

Base model

UBC-NLP/MARBERTv2
Finetuned
(12)
this model