SJ-Donald/SJ-SOLAR-10.7b-DPO

SJ-Donald/SJ-SOLAR-10.7b-DPO is fine-tuned using DPO method.

Environment

Using Google CoLab A100

Base model

Datasets

Benchmark

Open-LLM-Leaderboard(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
72.67 68.26 86.95 66.73 67.74 84.21 62.03

open-ko-llm-leaderboard(https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)

Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
56.93 53.67 61.99 53.36 57.2 58.44

How to use

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

repo = 'SJ-Donald/SJ-SOLAR-10.7b-DPO'

tokenizer = AutoTokenizer.from_pretrained(repo)
model = AutoModelForCausalLM.from_pretrained(
    repo,
    return_dict=True,
    torch_dtype=torch.float16,
    device_map='auto'
)

Chat Template

template = """### System:
{{system_content}}

### User:
{{question}}

### Assistant:
"""

GGUF Version

You can use gguf model file here! -> SJ-Donald/SJ-SOLAR-10.7b-DPO-GGUF

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 72.67
AI2 Reasoning Challenge (25-Shot) 68.26
HellaSwag (10-Shot) 86.95
MMLU (5-Shot) 66.73
TruthfulQA (0-shot) 67.74
Winogrande (5-shot) 84.21
GSM8k (5-shot) 62.09
Downloads last month
3,552
Safetensors
Model size
10.9B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SJ-Donald/SJ-SOLAR-10.7b-DPO

Quantizations
2 models

Evaluation results