|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- AIDX-ktds/ko_leaderboard |
|
language: |
|
- ko |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- ko_leaderboard |
|
- upstage/open-ko-llm-leaderboard |
|
- open-ko-llm-leaderboard |
|
--- |
|
### β± ν΄λΉ λͺ¨λΈμμ LlaMA3.1μ Foundation λͺ¨λΈλ‘ νλ νκ΅μ΄ λ° νκ΅μ λ€μν |
|
### λ¬Ένμ μ μ©ν μ μλλ‘ νκΈ° μν΄ |
|
### κ°λ° λμμΌλ©° μ체 μ μν 53κ° μμμ νκ΅μ΄ λ°μ΄ν°λ₯Ό νμ©νμ¬ νκ΅ μ¬ν κ°μΉμ |
|
### λ¬Ένλ₯Ό μ΄ν΄νλ λͺ¨λΈ μ
λλ€. Thanks for ktdsβ |
|
|
|
### V1.4 νμ΅λ°μ΄ν° μΆκ°: 280K, Epoch=3 |
|
|
|
|
|
# βΆ λͺ¨λΈ μ€λͺ
|
|
- λͺ¨λΈλͺ
λ° μ£ΌμκΈ°λ₯: |
|
ν΄λΉ λͺ¨λΈμμ LlaMA3.1 λͺ¨λΈμ κΈ°λ°μΌλ‘ SFT λ°©μμΌλ‘ νμΈνλλ λͺ¨λΈμ
λλ€. |
|
νκ΅μ΄μ νκ΅μ λ€μν λ¬Ένμ λ§₯λ½μ μ΄ν΄νλλ‘ μ€κ³λμμΌλ©° β¨β¨, μ체 μ μν 53κ° μμμ νκ΅μ΄ |
|
λ°μ΄ν°λ₯Ό νμ©ν΄ νκ΅ μ¬νμ κ°μΉμ λ¬Ένλ₯Ό λ°μν©λλ€. |
|
μ£Όμ κΈ°λ₯μΌλ‘λ ν
μ€νΈ μμ±, λν μΆλ‘ , λ¬Έμ μμ½, μ§μμλ΅, κ°μ λΆμ λ° μμ°μ΄ μ²λ¦¬ κ΄λ ¨ λ€μν μμ
μ μ§μνλ©°, |
|
νμ© λΆμΌλ λ²λ₯ , μ¬λ¬΄, κ³Όν, κ΅μ‘, λΉμ¦λμ€, λ¬Έν μ°κ΅¬ λ± λ€μν λΆμΌμμ μμ©λ μ μμ΅λλ€. |
|
- λͺ¨λΈ μν€ν
μ²: |
|
ν΄λΉ λͺ¨λΈμ LlaMA3.1 8B λͺ¨λΈμ κΈ°λ°μΌλ‘, νλΌλ―Έν° μλ 80μ΅ κ°(8B)λ‘ κ΅¬μ±λ κ³ μ±λ₯ μΈμ΄ λͺ¨λΈμ
λλ€. |
|
μ΄ λͺ¨λΈμLlaMA3.1 8Bλ₯Ό νμ΄λ°μ΄μ
λͺ¨λΈλ‘ μΌμ, SFT(μ§λ λ―ΈμΈ μ‘°μ ) λ°©μμ ν΅ν΄ νκ΅μ΄μ νκ΅ λ¬Ένμ νΉνλ μ±λ₯μ λ°ννλλ‘ νλ ¨λμμ΅λλ€. |
|
LlaMA3.1 8Bμ κ²½λνλ ꡬ쑰λ λΉ λ₯Έ μΆλ‘ μλμ λ©λͺ¨λ¦¬ ν¨μ¨μ±μ 보μ₯νλ©°, λ€μν μμ°μ΄ μ²λ¦¬ μμ
μ μ ν©νκ² μ΅μ νλμ΄ μμ΅λλ€. |
|
μ΄ μν€ν
μ²λ ν
μ€νΈ μμ±, μ§μμλ΅, λ¬Έμ μμ½, κ°μ λΆμκ³Ό κ°μ λ€μν μμ
μμ νμν μ±λ₯μ 보μ¬μ€λλ€. |
|
|
|
# β· νμ΅ λ°μ΄ν° |
|
- ν΄λΉ λͺ¨λΈμμ μ체 κ°λ°ν μ΄ 3.6GB ν¬κΈ°μ λ°μ΄ν°λ₯Ό λ°νμΌλ‘ νμ΅λμμ΅λλ€. λͺ¨λ 233λ§ κ±΄μ QnA, μμ½, λΆλ₯ λ± λ°μ΄ν°λ₯Ό ν¬ν¨νλ©°, |
|
κ·Έ μ€ 133λ§ κ±΄μ 53κ° μμμ κ°κ΄μ λ¬Έμ λ‘ κ΅¬μ±λμμ΅λλ€. μ΄ μμμλ νκ΅μ¬, μ¬ν, μ¬λ¬΄, λ²λ₯ , μΈλ¬΄, μν, μλ¬Ό, 물리, νν λ±μ΄ ν¬ν¨λλ©°, |
|
Chain of Thought λ°©μμΌλ‘ νμ΅λμμ΅λλ€. λν 130λ§ κ±΄μ μ£Όκ΄μ λ¬Έμ λ νκ΅μ¬, μ¬λ¬΄, λ²λ₯ , μΈλ¬΄, μν λ± 38κ° μμμ κ±Έμ³ νμ΅λμμ΅λλ€. |
|
νμ΅ λ°μ΄ν° μ€ νκ΅μ μ¬ν κ°μΉμ μΈκ°μ κ°μ μ μ΄ν΄νκ³ μ§μν μ¬νμ λ°λΌ μΆλ ₯ν μ μλ λ°μ΄ν°λ₯Ό νμ΅νμμ΅λλ€. |
|
- νμ΅ Instruction Datasets Format: |
|
<pre><code>{"prompt": "prompt text", "completion": "ideal generated text"}</code></pre> |
|
|
|
# βΈ μ¬μ© μ¬λ‘ |
|
ν΄λΉ λͺ¨λΈμ λ€μν μμ© λΆμΌμμ μ¬μ©λ μ μμ΅λλ€. μλ₯Ό λ€μ΄: |
|
- κ΅μ‘ λΆμΌ: μμ¬, μν, κ³Όν λ± λ€μν νμ΅ μλ£μ λν μ§μμλ΅ λ° μ€λͺ
μμ±. |
|
- λΉμ¦λμ€: λ²λ₯ , μ¬λ¬΄, μΈλ¬΄ κ΄λ ¨ μ§μμ λν λ΅λ³ μ 곡 λ° λ¬Έμ μμ½. |
|
- μ°κ΅¬ λ° λ¬Έν: νκ΅ μ¬νμ λ¬Ένμ λ§μΆ μμ°μ΄ μ²λ¦¬ μμ
, κ°μ λΆμ, λ¬Έμ μμ± λ° λ²μ. |
|
- κ³ κ° μλΉμ€: μ¬μ©μμμ λν μμ± λ° λ§μΆ€ν μλ΅ μ 곡. |
|
- μ΄ λͺ¨λΈμ λ€μν μμ°μ΄ μ²λ¦¬ μμ
μμ λμ νμ©λλ₯Ό κ°μ§λλ€. |
|
|
|
# βΉ νκ³ ββ |
|
- ν΄λΉ λͺ¨λΈμ νκ΅μ΄μ νκ΅ λ¬Ένμ νΉνλμ΄ μμΌλ, |
|
νΉμ μμ(μ: μ΅μ κ΅μ μλ£, μ λ¬Έ λΆμΌ)μ λ°μ΄ν° λΆμ‘±μΌλ‘ μΈν΄ λ€λ₯Έ μΈμ΄ λλ |
|
λ¬Ένμ λν μλ΅μ μ νμ±μ΄ λ¨μ΄μ§ μ μμ΅λλ€. |
|
λν, 볡μ‘ν λ
Όλ¦¬μ μ¬κ³ λ₯Ό μꡬνλ λ¬Έμ μ λν΄ μ νλ μΆλ‘ λ₯λ ₯μ λ³΄μΌ μ μμΌλ©°, |
|
νΈν₯λ λ°μ΄ν°κ° ν¬ν¨λ κ²½μ° νΈν₯λ μλ΅μ΄ μμ±λ κ°λ₯μ±λ μ‘΄μ¬ν©λλ€. |
|
|
|
# βΊ μ¬μ© λ°©λ² |
|
<pre><code> |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("SEOKDONG/llama3.0_korean_v1.0_sft") |
|
model = AutoModel.from_pretrained("SEOKDONG/llama3.0_korean_v1.0_sft") |
|
|
|
input_text = """ γκ΅λ―Όκ±΄κ°λ³΄νλ²γμ 44μ‘°, γκ΅λ―Όκ±΄κ°λ³΄νλ² μνλ Ήγμ 19μ‘°,γμ½κ΄μ κ·μ μ κ΄ν λ²λ₯ γμ 5μ‘°, γμλ²γμ 54μ‘° μ°Έμ‘° νλ¨ ν΄μ€""" + " λ΅λ³:" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, max_length=1024, temperature=0.5, do_sample=True, repetition_penalty=1.15) |
|
|
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(result) |
|
</code></pre> |