marcorosa nazneen commited on
Commit
60290dd
·
1 Parent(s): 0ffd865

model documentation (#2)

Browse files

- model documentation (eb5dbede99cabda3056a8024bc250048bce69937)
- Update README.md (97457946bfc34a8964dec0363625c998d1af614e)


Co-authored-by: Nazneen Rajani <[email protected]>

Files changed (1) hide show
  1. README.md +136 -11
README.md CHANGED
@@ -1,17 +1,142 @@
1
- # Password-Model
 
 
2
 
3
- The Password Model is intended to be used with [Credential Digger](https://github.com/SAP/credential-digger) in order to automatically filter false positive password discoveries.
 
4
 
5
- ## Model description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
 
 
 
 
 
 
 
 
 
7
  [CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) fine-tuned on a dataset for leak detection.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- The aim of this model is to classify whether a code snippet contains a password (i.e., there is a leak) or not.
10
-
11
- ## How to use
12
-
13
- The model is directly integrated into Credential Digger and can be used to filter the false positive discoveries of a scan.
 
14
 
15
- Please refer to Credential Digger for its usage within the [Python library](https://github.com/SAP/credential-digger#python-library-usage),
16
- the [CLI](https://github.com/SAP/credential-digger/wiki/CLI:--Command-Line-Interface),
17
- or the UI.
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
 
5
+ ---
6
+ # Model Card for Password-Model
7
 
8
+
9
+ # Model Details
10
+
11
+ ## Model Description
12
+
13
+
14
+ The Password Model is intended to be used with [Credential Digger](https://github.com/SAP/credential-digger) in order to automatically filter false positive password discoveries.
15
+
16
+ - **Developed by:** SAP OSS
17
+ - **Shared by [Optional]:** Hugging Face
18
+ - **Model type:** Text Classification
19
+ - **Language(s) (NLP):** en
20
+ - **License:** Apache-2.0
21
+ - **Related Models:**
22
+ - **Parent Model:** RoBERTa
23
+ - **Resources for more information:**
24
+ - [GitHub Repo](https://github.com/SAP/credential-digger)
25
+ - [Associated Paper](https://www.scitepress.org/Papers/2021/102381/102381.pdf)
26
+
27
+ # Uses
28
+
29
+
30
+ ## Direct Use
31
+ The model is directly integrated into [Credential Digger]((https://github.com/SAP/credential-digger) and can be used to filter the false positive password discoveries of a scan.
32
+
33
 
34
+ ## Out-of-Scope Use
35
+
36
+ The model should not be used to intentionally create hostile or alienating environments for people.
37
+
38
+
39
+ # Training Details
40
+
41
+ ## Training Data
42
+
43
  [CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) fine-tuned on a dataset for leak detection.
44
+
45
+
46
+ ## Training Procedure
47
+
48
+
49
+ ### Preprocessing
50
+
51
+ More information needed
52
+
53
+ ### Speeds, Sizes, Times
54
+
55
+ More information needed
56
+
57
+ # Evaluation
58
+
59
+ More information needed
60
+
61
+ ## Testing Data, Factors & Metrics
62
+
63
+ ### Testing Data
64
+
65
+ More information needed
66
+
67
+ ### Factors
68
+
69
+ More information needed
70
+
71
+ ### Metrics
72
+
73
+ More information needed
74
+
75
+ ## Results
76
+
77
+ More information needed
78
+
79
+
80
+ # Model Examination
81
+ More information needed
82
+
83
+ # Environmental Impact
84
+
85
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
86
+
87
+ - **Hardware Type:** More information needed
88
+ - **Hours used:** More information needed
89
+ - **Cloud Provider:** More information needed
90
+ - **Compute Region:** More information needed
91
+ - **Carbon Emitted:** More information needed
92
+
93
+ # Technical Specifications [optional]
94
+
95
+ ## Model Architecture and Objective
96
+
97
+ More information needed
98
+
99
+ ## Compute Infrastructure
100
+ More information needed
101
+
102
+ ### Hardware
103
+
104
+ More information needed
105
+
106
+ ### Software
107
+
108
+ More information needed
109
+
110
+
111
+ # Citation
112
+
113
+ **BibTeX:**
114
+
115
+ ```
116
+ TBD
117
+ ```
118
+
119
+ # Model Card Authors [optional]
120
+
121
+ SAP OSS in collaboration with Ezi Ozoani and the Hugging Face team.
122
+
123
+ # Model Card Contact
124
+
125
+ More information needed
126
 
127
+ # How to Get Started with the Model
128
+
129
+ The model is directly integrated into Credential Digger and can be used to filter the false positive discoveries of a scan
130
+
131
+ <details>
132
+ <summary> Click to expand </summary>
133
 
134
+ ```python
135
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
136
+
137
+ tokenizer = AutoTokenizer.from_pretrained("SAPOSS/password-model")
138
+
139
+ model = AutoModelForSequenceClassification.from_pretrained("SAPOSS/password-model")
140
+
141
+ ```
142
+ </details>