nazneen commited on
Commit
eb5dbed
·
1 Parent(s): 0ffd865

model documentation

Browse files
Files changed (1) hide show
  1. README.md +167 -12
README.md CHANGED
@@ -1,17 +1,172 @@
1
- # Password-Model
 
 
2
 
3
- The Password Model is intended to be used with [Credential Digger](https://github.com/SAP/credential-digger) in order to automatically filter false positive password discoveries.
4
-
5
- ## Model description
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  [CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) fine-tuned on a dataset for leak detection.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- The aim of this model is to classify whether a code snippet contains a password (i.e., there is a leak) or not.
10
-
11
- ## How to use
12
-
13
- The model is directly integrated into Credential Digger and can be used to filter the false positive discoveries of a scan.
 
14
 
15
- Please refer to Credential Digger for its usage within the [Python library](https://github.com/SAP/credential-digger#python-library-usage),
16
- the [CLI](https://github.com/SAP/credential-digger/wiki/CLI:--Command-Line-Interface),
17
- or the UI.
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
 
5
+ ---
6
+ # Model Card for Password-Model
 
7
 
8
+
9
+ # Model Details
10
+
11
+ ## Model Description
12
+
13
+
14
+ The Password Model is intended to be used with [Credential Digger](https://github.com/SAP/credential-digger) in order to automatically filter false positive password discoveries.
15
+
16
+ - **Developed by:** SAP OSS
17
+ - **Shared by [Optional]:** Hugging Face
18
+ - **Model type:** Text Classification
19
+ - **Language(s) (NLP):** en
20
+ - **License:** Apache-2.0
21
+ - **Related Models:**
22
+ - **Parent Model:** RoBERTa
23
+ - **Resources for more information:**
24
+ - [GitHub Repo](https://github.com/SAP/credential-digger)
25
+ - [Associated Paper](https://www.scitepress.org/Papers/2021/102381/102381.pdf)
26
+
27
+ # Uses
28
+
29
+
30
+ ## Direct Use
31
+ The model is directly integrated into Credential Digger and can be used to filter the false positive discoveries of a scan
32
+
33
+ ## Downstream Use [Optional]
34
+
35
+
36
+ More information needed.
37
+
38
+ ## Out-of-Scope Use
39
+
40
+
41
+ The model should not be used to intentionally create hostile or alienating environments for people.
42
+
43
+ # Bias, Risks, and Limitations
44
+
45
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
46
+
47
+
48
+ ## Recommendations
49
+
50
+
51
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
52
+
53
+
54
+ # Training Details
55
+
56
+ ## Training Data
57
+
58
  [CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) fine-tuned on a dataset for leak detection.
59
+
60
+
61
+ ## Training Procedure
62
+
63
+
64
+ ### Preprocessing
65
+
66
+ More information needed
67
+
68
+ ### Speeds, Sizes, Times
69
+
70
+ More information needed
71
+
72
+ # Evaluation
73
+
74
+ More information needed
75
+
76
+ ## Testing Data, Factors & Metrics
77
+
78
+ ### Testing Data
79
+
80
+ More information needed
81
+
82
+ ### Factors
83
+
84
+ More information needed
85
+
86
+ ### Metrics
87
+
88
+ More information needed
89
+
90
+ ## Results
91
+
92
+ More information needed
93
+
94
+
95
+ # Model Examination
96
+ More information needed
97
+
98
+ # Environmental Impact
99
+
100
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
101
+
102
+ - **Hardware Type:** More information needed
103
+ - **Hours used:** More information needed
104
+ - **Cloud Provider:** More information needed
105
+ - **Compute Region:** More information needed
106
+ - **Carbon Emitted:** More information needed
107
+
108
+ # Technical Specifications [optional]
109
+
110
+ ## Model Architecture and Objective
111
+
112
+ More information needed
113
+
114
+ ## Compute Infrastructure
115
+ More information needed
116
+
117
+ ### Hardware
118
+
119
+ More information needed
120
+
121
+ ### Software
122
+
123
+ More information needed
124
+
125
+
126
+ # Citation
127
+
128
+ **BibTeX:**
129
+
130
+ ```
131
+ @InProceedings {lrnto-icissp21,
132
+ author = {S. Lounici and M. Rosa and C. M. Negri and S. Trabelsi and M. Önen},
133
+ booktitle = {Proc. of the 8th The International Conference on Information Systems Security and Privacy (ICISSP)},
134
+ title = {Optimizing Leak Detection in Open-Source Platforms with Machine Learning Techniques},
135
+ month = {February},
136
+ day = {11-13},
137
+ year = {2021}
138
+ }
139
+ ```
140
+
141
+ # Glossary [optional]
142
+
143
+ More information needed
144
+
145
+ # More Information [optional]
146
+
147
+ More information needed
148
+
149
+ # Model Card Authors [optional]
150
+
151
+ SAP OSS in collaboration with Ezi Ozoani and the Hugging Face team.
152
+
153
+ # Model Card Contact
154
+
155
+ More information needed
156
 
157
+ # How to Get Started with the Model
158
+
159
+ The model is directly integrated into Credential Digger and can be used to filter the false positive discoveries of a scan
160
+
161
+ <details>
162
+ <summary> Click to expand </summary>
163
 
164
+ ```python
165
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
166
+
167
+ tokenizer = AutoTokenizer.from_pretrained("SAPOSS/password-model")
168
+
169
+ model = AutoModelForSequenceClassification.from_pretrained("SAPOSS/password-model")
170
+
171
+ ```
172
+ </details>