pythia-70m_tatsu-lab_alpaca_farm_sftsd0_policy_pythia-6.9b_gold_internlm2-7b_noise0.25_rmsd2
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7715
- Accuracy: 0.5312
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 0.8791 | 0.5158 |
0.8237 | 0.0648 | 100 | 0.8836 | 0.5077 |
0.8692 | 0.1296 | 200 | 0.8703 | 0.5120 |
0.8862 | 0.1944 | 300 | 0.8459 | 0.5139 |
0.805 | 0.2592 | 400 | 0.8338 | 0.5170 |
0.8476 | 0.3239 | 500 | 0.8211 | 0.5247 |
0.87 | 0.3887 | 600 | 0.8137 | 0.5197 |
0.7827 | 0.4535 | 700 | 0.8091 | 0.5251 |
0.8028 | 0.5183 | 800 | 0.8105 | 0.5224 |
0.7531 | 0.5831 | 900 | 0.8027 | 0.5255 |
0.7557 | 0.6479 | 1000 | 0.7992 | 0.5270 |
0.8452 | 0.7127 | 1100 | 0.8015 | 0.5224 |
0.7943 | 0.7775 | 1200 | 0.7905 | 0.5262 |
0.7649 | 0.8422 | 1300 | 0.7861 | 0.5274 |
0.7663 | 0.9070 | 1400 | 0.7874 | 0.5351 |
0.7498 | 0.9718 | 1500 | 0.7858 | 0.5351 |
0.7649 | 1.0366 | 1600 | 0.7848 | 0.5289 |
0.7859 | 1.1014 | 1700 | 0.7861 | 0.5285 |
0.7689 | 1.1662 | 1800 | 0.7864 | 0.5297 |
0.745 | 1.2310 | 1900 | 0.7821 | 0.5289 |
0.7447 | 1.2958 | 2000 | 0.7830 | 0.5340 |
0.8268 | 1.3605 | 2100 | 0.7796 | 0.5293 |
0.7596 | 1.4253 | 2200 | 0.7797 | 0.5336 |
0.7543 | 1.4901 | 2300 | 0.7741 | 0.5278 |
0.7558 | 1.5549 | 2400 | 0.7736 | 0.5266 |
0.7518 | 1.6197 | 2500 | 0.7725 | 0.5251 |
0.7845 | 1.6845 | 2600 | 0.7738 | 0.5367 |
0.763 | 1.7493 | 2700 | 0.7776 | 0.5262 |
0.7527 | 1.8141 | 2800 | 0.7756 | 0.5312 |
0.7533 | 1.8788 | 2900 | 0.7799 | 0.5262 |
0.7932 | 1.9436 | 3000 | 0.7757 | 0.5347 |
0.7522 | 2.0084 | 3100 | 0.7757 | 0.5332 |
0.7677 | 2.0732 | 3200 | 0.7738 | 0.5228 |
0.7804 | 2.1380 | 3300 | 0.7733 | 0.5274 |
0.7504 | 2.2028 | 3400 | 0.7742 | 0.5266 |
0.7793 | 2.2676 | 3500 | 0.7757 | 0.5266 |
0.7447 | 2.3324 | 3600 | 0.7726 | 0.5266 |
0.7647 | 2.3971 | 3700 | 0.7728 | 0.5343 |
0.7154 | 2.4619 | 3800 | 0.7704 | 0.5251 |
0.7742 | 2.5267 | 3900 | 0.7743 | 0.5312 |
0.7828 | 2.5915 | 4000 | 0.7758 | 0.5197 |
0.7383 | 2.6563 | 4100 | 0.7729 | 0.5297 |
0.765 | 2.7211 | 4200 | 0.7761 | 0.5270 |
0.7862 | 2.7859 | 4300 | 0.7764 | 0.5255 |
0.7602 | 2.8507 | 4400 | 0.7735 | 0.5270 |
0.7487 | 2.9155 | 4500 | 0.7758 | 0.5266 |
0.7447 | 2.9802 | 4600 | 0.7747 | 0.5297 |
0.7869 | 3.0450 | 4700 | 0.7756 | 0.5340 |
0.7655 | 3.1098 | 4800 | 0.7778 | 0.5301 |
0.7438 | 3.1746 | 4900 | 0.7717 | 0.5270 |
0.7754 | 3.2394 | 5000 | 0.7725 | 0.5320 |
0.7783 | 3.3042 | 5100 | 0.7685 | 0.5401 |
0.7806 | 3.3690 | 5200 | 0.7718 | 0.5289 |
0.7755 | 3.4338 | 5300 | 0.7700 | 0.5343 |
0.7698 | 3.4985 | 5400 | 0.7723 | 0.5270 |
0.7772 | 3.5633 | 5500 | 0.7733 | 0.5320 |
0.8048 | 3.6281 | 5600 | 0.7750 | 0.5266 |
0.7491 | 3.6929 | 5700 | 0.7732 | 0.5274 |
0.8085 | 3.7577 | 5800 | 0.7757 | 0.5243 |
0.7653 | 3.8225 | 5900 | 0.7739 | 0.5228 |
0.7702 | 3.8873 | 6000 | 0.7747 | 0.5197 |
0.7671 | 3.9521 | 6100 | 0.7711 | 0.5316 |
0.777 | 4.0168 | 6200 | 0.7739 | 0.5282 |
0.7451 | 4.0816 | 6300 | 0.7709 | 0.5324 |
0.7121 | 4.1464 | 6400 | 0.7706 | 0.5355 |
0.7714 | 4.2112 | 6500 | 0.7721 | 0.5370 |
0.7299 | 4.2760 | 6600 | 0.7697 | 0.5382 |
0.782 | 4.3408 | 6700 | 0.7759 | 0.5312 |
0.7759 | 4.4056 | 6800 | 0.7726 | 0.5270 |
0.7474 | 4.4704 | 6900 | 0.7669 | 0.5355 |
0.776 | 4.5351 | 7000 | 0.7721 | 0.5309 |
0.7693 | 4.5999 | 7100 | 0.7720 | 0.5316 |
0.7578 | 4.6647 | 7200 | 0.7731 | 0.5274 |
0.7431 | 4.7295 | 7300 | 0.7690 | 0.5351 |
0.7883 | 4.7943 | 7400 | 0.7726 | 0.5255 |
0.7794 | 4.8591 | 7500 | 0.7704 | 0.5255 |
0.7697 | 4.9239 | 7600 | 0.7730 | 0.5312 |
0.7373 | 4.9887 | 7700 | 0.7714 | 0.5328 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.