metadata
license: gemma
base_model: google/gemma-2-27b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-27b_hs2_accumulate_iter2_sftsd1
results: []
collapse_gemma-2-27b_hs2_accumulate_iter2_sftsd1
This model is a fine-tuned version of google/gemma-2-27b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9205
- Num Input Tokens Seen: 9260048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 4
- eval_batch_size: 16
- seed: 1
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
No log | 0 | 0 | 1.1282 | 0 |
1.6371 | 0.0278 | 5 | 1.0191 | 267540 |
1.6662 | 0.0555 | 10 | 0.9724 | 529072 |
1.3682 | 0.0833 | 15 | 0.9593 | 785900 |
1.465 | 0.1111 | 20 | 0.9571 | 1044336 |
1.4939 | 0.1388 | 25 | 0.9602 | 1302088 |
1.2547 | 0.1666 | 30 | 0.9604 | 1553344 |
1.3517 | 0.1944 | 35 | 0.9564 | 1808072 |
1.2594 | 0.2221 | 40 | 0.9531 | 2069656 |
1.122 | 0.2499 | 45 | 0.9501 | 2318876 |
1.1374 | 0.2777 | 50 | 0.9461 | 2574304 |
1.0402 | 0.3054 | 55 | 0.9441 | 2835460 |
0.9125 | 0.3332 | 60 | 0.9417 | 3100792 |
0.9725 | 0.3610 | 65 | 0.9371 | 3359628 |
1.0081 | 0.3888 | 70 | 0.9372 | 3624016 |
0.9675 | 0.4165 | 75 | 0.9346 | 3880016 |
1.0841 | 0.4443 | 80 | 0.9351 | 4126948 |
1.0015 | 0.4721 | 85 | 0.9313 | 4380144 |
1.0436 | 0.4998 | 90 | 0.9319 | 4645252 |
1.0193 | 0.5276 | 95 | 0.9298 | 4896128 |
1.0469 | 0.5554 | 100 | 0.9291 | 5148796 |
0.8706 | 0.5831 | 105 | 0.9269 | 5411164 |
0.8656 | 0.6109 | 110 | 0.9262 | 5663420 |
1.0066 | 0.6387 | 115 | 0.9243 | 5931756 |
0.8539 | 0.6664 | 120 | 0.9247 | 6192724 |
0.9333 | 0.6942 | 125 | 0.9233 | 6447744 |
0.8919 | 0.7220 | 130 | 0.9224 | 6704364 |
0.8694 | 0.7497 | 135 | 0.9221 | 6955692 |
0.916 | 0.7775 | 140 | 0.9211 | 7212120 |
0.9457 | 0.8053 | 145 | 0.9215 | 7469356 |
0.8997 | 0.8330 | 150 | 0.9199 | 7730508 |
0.8992 | 0.8608 | 155 | 0.9206 | 7979484 |
0.9604 | 0.8886 | 160 | 0.9191 | 8234480 |
0.9 | 0.9163 | 165 | 0.9186 | 8489188 |
0.9385 | 0.9441 | 170 | 0.9202 | 8745136 |
0.964 | 0.9719 | 175 | 0.9175 | 9000760 |
0.9423 | 0.9997 | 180 | 0.9205 | 9260048 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1