|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch LTG-(ELC)-ParserBERT model.""" |
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils import checkpoint |
|
|
|
from .configuration_ltgbert import LtgBertConfig |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.activations import gelu_new |
|
from transformers.modeling_outputs import ( |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
BaseModelOutput, |
|
) |
|
from transformers.pytorch_utils import softmax_backward_data |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
) |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "ltg/bnc-bert-span" |
|
_CONFIG_FOR_DOC = "LtgBertConfig" |
|
|
|
|
|
LTG_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"bnc-bert-span", |
|
"bnc-bert-span-2x", |
|
"bnc-bert-span-0.5x", |
|
"bnc-bert-span-0.25x", |
|
"bnc-bert-span-order", |
|
"bnc-bert-span-document", |
|
"bnc-bert-span-word", |
|
"bnc-bert-span-subword", |
|
"norbert3-xs", |
|
"norbert3-small", |
|
"norbert3-base", |
|
"norbert3-large", |
|
"norbert3-oversampled-base", |
|
"norbert3-ncc-base", |
|
"norbert3-nak-base", |
|
"norbert3-nb-base", |
|
"norbert3-wiki-base", |
|
"norbert3-c4-base", |
|
] |
|
|
|
|
|
class Conv1d(nn.Module): |
|
"""1D convolution layer.""" |
|
|
|
def __init__(self, hidden_size, kernel_size, dilation=1): |
|
"""Initialization. |
|
|
|
Args: |
|
hidden_size: dimension of input embeddings |
|
kernel_size: convolution kernel size |
|
dilation: the spacing between the kernel points |
|
""" |
|
super(Conv1d, self).__init__() |
|
|
|
if kernel_size % 2 == 0: |
|
padding = (kernel_size // 2) * dilation |
|
self.shift = True |
|
else: |
|
padding = ((kernel_size - 1) // 2) * dilation |
|
self.shift = False |
|
self.conv = nn.Conv1d( |
|
hidden_size, hidden_size, kernel_size, padding=padding, dilation=dilation |
|
) |
|
|
|
def forward(self, x): |
|
"""Compute convolution. |
|
|
|
Args: |
|
x: input embeddings |
|
Returns: |
|
conv_output: convolution results |
|
""" |
|
|
|
if self.shift: |
|
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:] |
|
else: |
|
return self.conv(x.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
def cumprod(x, reverse=False, exclusive=False): |
|
"""cumulative product.""" |
|
if reverse: |
|
x = x.flip([-1]) |
|
|
|
if exclusive: |
|
x = F.pad(x[:, :, :-1], (1, 0), value=1) |
|
|
|
cx = x.cumprod(-1) |
|
|
|
if reverse: |
|
cx = cx.flip([-1]) |
|
return cx |
|
|
|
|
|
def cumsum(x, reverse=False, exclusive=False): |
|
"""cumulative sum.""" |
|
bsz, _, length = x.size() |
|
device = x.device |
|
if reverse: |
|
if exclusive: |
|
w = torch.ones([bsz, length, length], device=device).tril(-1) |
|
else: |
|
w = torch.ones([bsz, length, length], device=device).tril(0) |
|
cx = torch.bmm(x, w) |
|
else: |
|
if exclusive: |
|
w = torch.ones([bsz, length, length], device=device).triu(1) |
|
else: |
|
w = torch.ones([bsz, length, length], device=device).triu(0) |
|
cx = torch.bmm(x, w) |
|
return cx |
|
|
|
|
|
def cummin(x, reverse=False, exclusive=False, max_value=1e4): |
|
"""cumulative min.""" |
|
if reverse: |
|
if exclusive: |
|
x = F.pad(x[:, :, 1:], (0, 1), value=max_value) |
|
x = x.flip([-1]).cummin(-1)[0].flip([-1]) |
|
else: |
|
if exclusive: |
|
x = F.pad(x[:, :, :-1], (1, 0), value=max_value) |
|
x = x.cummin(-1)[0] |
|
return x |
|
|
|
|
|
class ParserNetwork(nn.Module): |
|
def __init__( |
|
self, |
|
config, |
|
pad=0, |
|
n_parser_layers=4, |
|
conv_size=9, |
|
relations=("head", "child"), |
|
weight_act="softmax", |
|
): |
|
""" |
|
hidden_size: dimension of input embeddings |
|
nlayers: number of layers |
|
ntokens: number of output categories |
|
nhead: number of self-attention heads |
|
dropout: dropout rate |
|
pad: pad token index |
|
n_parser_layers: number of parsing layers |
|
conv_size: convolution kernel size for parser |
|
relations: relations that are used to compute self attention |
|
weight_act: relations distribution activation function |
|
""" |
|
super(ParserNetwork, self).__init__() |
|
self.hidden_size = config.hidden_size |
|
self.num_hidden_layers = config.num_hidden_layers |
|
self.num_attention_heads = config.num_attention_heads |
|
|
|
self.parser_layers = nn.ModuleList( |
|
[ |
|
nn.Sequential( |
|
Conv1d(self.hidden_size, conv_size), |
|
nn.LayerNorm(self.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
) |
|
for _ in range(n_parser_layers) |
|
] |
|
) |
|
|
|
self.distance_ff = nn.Sequential( |
|
Conv1d(self.hidden_size, 2), |
|
nn.LayerNorm(self.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(self.hidden_size, 1), |
|
) |
|
|
|
self.height_ff = nn.Sequential( |
|
nn.Linear(self.hidden_size, self.hidden_size), |
|
nn.LayerNorm(self.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(self.hidden_size, 1), |
|
) |
|
|
|
n_rel = len(relations) |
|
self._rel_weight = nn.Parameter( |
|
torch.zeros((self.num_hidden_layers, self.num_attention_heads, n_rel)) |
|
) |
|
self._rel_weight.data.normal_(0, 0.1) |
|
|
|
self._scaler = nn.Parameter(torch.zeros(2)) |
|
|
|
self.n_parse_layers = n_parser_layers |
|
self.weight_act = weight_act |
|
self.relations = relations |
|
self.pad = pad |
|
|
|
@property |
|
def scaler(self): |
|
return self._scaler.exp() |
|
|
|
@property |
|
def rel_weight(self): |
|
if self.weight_act == "sigmoid": |
|
return torch.sigmoid(self._rel_weight) |
|
elif self.weight_act == "softmax": |
|
return torch.softmax(self._rel_weight, dim=-1) |
|
|
|
def parse(self, x, h): |
|
""" |
|
Parse input sentence. |
|
Args: |
|
x: input tokens (required). |
|
h: static embeddings |
|
Returns: |
|
distance: syntactic distance |
|
height: syntactic height |
|
""" |
|
|
|
mask = x != self.pad |
|
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0) |
|
|
|
for i in range(self.n_parse_layers): |
|
h = h.masked_fill(~mask[:, :, None], 0) |
|
h = self.parser_layers[i](h) |
|
|
|
height = self.height_ff(h).squeeze(-1) |
|
height.masked_fill_(~mask, -1e4) |
|
|
|
distance = self.distance_ff(h).squeeze(-1) |
|
distance.masked_fill_(~mask_shifted, 1e4) |
|
|
|
|
|
length = distance.size(1) |
|
height_max = height[:, None, :].expand(-1, length, -1) |
|
height_max = torch.cummax( |
|
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e4, dim=-1 |
|
)[0].triu(0) |
|
|
|
margin_left = torch.relu( |
|
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e4) - height_max |
|
) |
|
margin_right = torch.relu(distance[:, None, :] - height_max) |
|
margin = torch.where( |
|
margin_left > margin_right, margin_right, margin_left |
|
).triu(0) |
|
|
|
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1) |
|
margin.masked_fill_(~margin_mask, 0) |
|
margin = margin.max() |
|
|
|
distance = distance - margin |
|
|
|
return distance, height |
|
|
|
def compute_block(self, distance, height): |
|
"""Compute constituents from distance and height.""" |
|
|
|
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0] |
|
|
|
gamma = torch.sigmoid(-beta_logits) |
|
ones = torch.ones_like(gamma) |
|
|
|
block_mask_left = cummin( |
|
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1 |
|
) |
|
block_mask_left = block_mask_left - F.pad( |
|
block_mask_left[:, :, :-1], (1, 0), value=0 |
|
) |
|
block_mask_left.tril_(0) |
|
|
|
block_mask_right = cummin( |
|
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1 |
|
) |
|
block_mask_right = block_mask_right - F.pad( |
|
block_mask_right[:, :, 1:], (0, 1), value=0 |
|
) |
|
block_mask_right.triu_(0) |
|
|
|
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :] |
|
block = cumsum(block_mask_left).tril(0) + cumsum( |
|
block_mask_right, reverse=True |
|
).triu(1) |
|
|
|
return block_p, block |
|
|
|
def compute_head(self, height): |
|
"""Estimate head for each constituent.""" |
|
|
|
_, length = height.size() |
|
head_logits = height * self.scaler[1] |
|
index = torch.arange(length, device=height.device) |
|
|
|
mask = (index[:, None, None] <= index[None, None, :]) * ( |
|
index[None, None, :] <= index[None, :, None] |
|
) |
|
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1) |
|
head_logits.masked_fill_(~mask[None, :, :, :], -1e4) |
|
|
|
head_p = torch.softmax(head_logits, dim=-1) |
|
|
|
return head_p |
|
|
|
def generate_mask(self, x, distance, height): |
|
"""Compute head and cibling distribution for each token.""" |
|
|
|
batch_size, length = x.size() |
|
|
|
eye = torch.eye(length, device=x.device, dtype=torch.bool) |
|
eye = eye[None, :, :].expand((batch_size, -1, -1)) |
|
|
|
block_p, block = self.compute_block(distance, height) |
|
head_p = self.compute_head(height) |
|
head = torch.einsum("blij,bijh->blh", block_p, head_p) |
|
head = head.masked_fill(eye, 0) |
|
child = head.transpose(1, 2) |
|
cibling = torch.bmm(head, child).masked_fill(eye, 0) |
|
|
|
rel_list = [] |
|
if "head" in self.relations: |
|
rel_list.append(head) |
|
if "child" in self.relations: |
|
rel_list.append(child) |
|
if "cibling" in self.relations: |
|
rel_list.append(cibling) |
|
|
|
rel = torch.stack(rel_list, dim=1) |
|
|
|
rel_weight = self.rel_weight |
|
|
|
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel) |
|
att_mask = dep.reshape( |
|
self.num_hidden_layers, batch_size, self.num_attention_heads, length, length |
|
) |
|
|
|
return att_mask, cibling, head, block |
|
|
|
def forward(self, x, embeddings): |
|
""" |
|
Pass the x tokens through the parse network, get the syntactic height and distances |
|
and compute the distribution for each token |
|
""" |
|
|
|
x = torch.transpose(x, 0, 1) |
|
embeddings = torch.transpose(embeddings, 0, 1) |
|
|
|
distance, height = self.parse(x, embeddings) |
|
att_mask, cibling, head, block = self.generate_mask(x, distance, height) |
|
return att_mask, cibling, head, block |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, config, activation_checkpointing=False): |
|
super().__init__() |
|
self.layers = nn.ModuleList( |
|
[EncoderLayer(config, i) for i in range(config.num_hidden_layers)] |
|
) |
|
|
|
for i, layer in enumerate(self.layers): |
|
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
|
|
self.activation_checkpointing = activation_checkpointing |
|
|
|
def forward(self, hidden_states, attention_mask, relative_embedding): |
|
hidden_states, attention_probs = [hidden_states], [] |
|
|
|
for i in range(len(self.layers)): |
|
if self.activation_checkpointing: |
|
hidden_state, attention_p = checkpoint.checkpoint( |
|
self.layers[i], hidden_states, attention_mask, relative_embedding |
|
) |
|
else: |
|
hidden_state, attention_p = self.layers[i]( |
|
hidden_states, attention_mask[i], relative_embedding |
|
) |
|
|
|
hidden_states.append(hidden_state) |
|
attention_probs.append(attention_p) |
|
|
|
return hidden_states, attention_probs |
|
|
|
|
|
class MaskClassifier(nn.Module): |
|
def __init__(self, config, subword_embedding): |
|
super().__init__() |
|
self.nonlinearity = nn.Sequential( |
|
nn.LayerNorm( |
|
config.hidden_size, config.layer_norm_eps, elementwise_affine=False |
|
), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm( |
|
config.hidden_size, config.layer_norm_eps, elementwise_affine=False |
|
), |
|
nn.Dropout(config.hidden_dropout_prob), |
|
nn.Linear(subword_embedding.size(1), subword_embedding.size(0)), |
|
) |
|
self.initialize(config.hidden_size, subword_embedding) |
|
|
|
def initialize(self, hidden_size, embedding): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_( |
|
self.nonlinearity[1].weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
self.nonlinearity[-1].weight = embedding |
|
self.nonlinearity[1].bias.data.zero_() |
|
self.nonlinearity[-1].bias.data.zero_() |
|
|
|
def forward(self, x, masked_lm_labels=None): |
|
if masked_lm_labels is not None: |
|
x = torch.index_select( |
|
x.flatten(0, 1), |
|
0, |
|
torch.nonzero(masked_lm_labels.flatten() != -100).squeeze(), |
|
) |
|
x = self.nonlinearity(x) |
|
return x |
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, config, layer_num): |
|
super().__init__() |
|
self.attention = Attention(config) |
|
self.mlp = FeedForward(config) |
|
temp = torch.zeros(layer_num + 1) |
|
temp[-1] = 1 |
|
self.prev_layer_weights = nn.Parameter(temp) |
|
|
|
def forward(self, hidden_states, padding_mask, relative_embedding): |
|
prev_layer_weights = F.softmax(self.prev_layer_weights, dim=-1) |
|
x = prev_layer_weights[0] * hidden_states[0] |
|
for i, hidden_state in enumerate(hidden_states[1:]): |
|
x = x + prev_layer_weights[i + 1] * hidden_state |
|
attention_output, attention_probs = self.attention( |
|
x, padding_mask, relative_embedding |
|
) |
|
x = attention_output |
|
x = x + self.mlp(x) |
|
return x, attention_probs |
|
|
|
|
|
class GeGLU(nn.Module): |
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
x = x * gelu_new(gate) |
|
return x |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False |
|
), |
|
nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False), |
|
GeGLU(), |
|
nn.LayerNorm( |
|
config.intermediate_size, |
|
eps=config.layer_norm_eps, |
|
elementwise_affine=False, |
|
), |
|
nn.Linear(config.intermediate_size, config.hidden_size, bias=False), |
|
nn.Dropout(config.hidden_dropout_prob), |
|
) |
|
self.initialize(config.hidden_size) |
|
|
|
def initialize(self, hidden_size): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_( |
|
self.mlp[1].weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
nn.init.trunc_normal_( |
|
self.mlp[-2].weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
|
|
class MaskedSoftmax(torch.autograd.Function): |
|
@staticmethod |
|
def forward(self, x, mask, dim): |
|
self.dim = dim |
|
x.masked_fill_(mask, float("-inf")) |
|
x = torch.softmax(x, self.dim) |
|
x.masked_fill_(mask, 0.0) |
|
self.save_for_backward(x) |
|
return x |
|
|
|
@staticmethod |
|
def backward(self, grad_output): |
|
(output,) = self.saved_tensors |
|
input_grad = softmax_backward_data(self, grad_output, output, self.dim, output) |
|
return input_grad, None, None |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.config = config |
|
|
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}" |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_size = config.hidden_size // config.num_attention_heads |
|
|
|
self.in_proj_qk = nn.Linear( |
|
config.hidden_size, 2 * config.hidden_size, bias=True |
|
) |
|
self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
|
|
self.pre_layer_norm = nn.LayerNorm( |
|
config.hidden_size, config.layer_norm_eps, elementwise_affine=False |
|
) |
|
self.post_layer_norm = nn.LayerNorm( |
|
config.hidden_size, config.layer_norm_eps, elementwise_affine=True |
|
) |
|
|
|
position_indices = torch.arange( |
|
config.max_position_embeddings, dtype=torch.long |
|
).unsqueeze(1) - torch.arange( |
|
config.max_position_embeddings, dtype=torch.long |
|
).unsqueeze( |
|
0 |
|
) |
|
position_indices = self.make_log_bucket_position( |
|
position_indices, |
|
config.position_bucket_size, |
|
config.max_position_embeddings, |
|
) |
|
position_indices = config.position_bucket_size - 1 + position_indices |
|
self.register_buffer("position_indices", position_indices, persistent=True) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.scale = 1.0 / math.sqrt(3 * self.head_size) |
|
self.initialize() |
|
|
|
def make_log_bucket_position(self, relative_pos, bucket_size, max_position): |
|
sign = torch.sign(relative_pos) |
|
mid = bucket_size // 2 |
|
abs_pos = torch.where( |
|
(relative_pos < mid) & (relative_pos > -mid), |
|
mid - 1, |
|
torch.abs(relative_pos).clamp(max=max_position - 1), |
|
) |
|
log_pos = ( |
|
torch.ceil( |
|
torch.log(abs_pos / mid) |
|
/ math.log((max_position - 1) / mid) |
|
* (mid - 1) |
|
).int() |
|
+ mid |
|
) |
|
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long() |
|
return bucket_pos |
|
|
|
def initialize(self): |
|
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) |
|
nn.init.trunc_normal_( |
|
self.in_proj_qk.weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
nn.init.trunc_normal_( |
|
self.in_proj_v.weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
nn.init.trunc_normal_( |
|
self.out_proj.weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
self.in_proj_qk.bias.data.zero_() |
|
self.in_proj_v.bias.data.zero_() |
|
self.out_proj.bias.data.zero_() |
|
|
|
def compute_attention_scores(self, hidden_states, relative_embedding): |
|
key_len, batch_size, _ = hidden_states.size() |
|
query_len = key_len |
|
|
|
if self.position_indices.size(0) < query_len: |
|
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze( |
|
1 |
|
) - torch.arange(query_len, dtype=torch.long).unsqueeze(0) |
|
position_indices = self.make_log_bucket_position( |
|
position_indices, self.position_bucket_size, 512 |
|
) |
|
position_indices = self.position_bucket_size - 1 + position_indices |
|
self.position_indices = position_indices.to(hidden_states.device) |
|
|
|
hidden_states = self.pre_layer_norm(hidden_states) |
|
|
|
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) |
|
value = self.in_proj_v(hidden_states) |
|
|
|
query = query.reshape( |
|
query_len, batch_size * self.num_heads, self.head_size |
|
).transpose(0, 1) |
|
key = key.reshape( |
|
key_len, batch_size * self.num_heads, self.head_size |
|
).transpose(0, 1) |
|
value = value.view( |
|
key_len, batch_size * self.num_heads, self.head_size |
|
).transpose(0, 1) |
|
|
|
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale) |
|
|
|
query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk( |
|
2, dim=-1 |
|
) |
|
query_pos = query_pos.view( |
|
-1, self.num_heads, self.head_size |
|
) |
|
key_pos = key_pos.view( |
|
-1, self.num_heads, self.head_size |
|
) |
|
|
|
query = query.view(batch_size, self.num_heads, query_len, self.head_size) |
|
key = key.view(batch_size, self.num_heads, query_len, self.head_size) |
|
|
|
attention_c_p = torch.einsum( |
|
"bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale |
|
) |
|
attention_p_c = torch.einsum( |
|
"bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1) |
|
) |
|
|
|
position_indices = self.position_indices[:query_len, :key_len].expand( |
|
batch_size, self.num_heads, -1, -1 |
|
) |
|
attention_c_p = attention_c_p.gather(3, position_indices) |
|
attention_p_c = attention_p_c.gather(2, position_indices) |
|
|
|
attention_scores = attention_scores.view( |
|
batch_size, self.num_heads, query_len, key_len |
|
) |
|
attention_scores.add_(attention_c_p) |
|
attention_scores.add_(attention_p_c) |
|
|
|
return attention_scores, value |
|
|
|
def compute_output(self, attention_probs, value): |
|
attention_probs = self.dropout(attention_probs) |
|
context = torch.bmm(attention_probs.flatten(0, 1), value) |
|
context = context.transpose(0, 1).reshape( |
|
context.size(1), -1, self.hidden_size |
|
) |
|
context = self.out_proj(context) |
|
context = self.post_layer_norm(context) |
|
context = self.dropout(context) |
|
return context |
|
|
|
def forward(self, hidden_states, attention_mask, relative_embedding): |
|
attention_scores, value = self.compute_attention_scores( |
|
hidden_states, relative_embedding |
|
) |
|
attention_probs = torch.sigmoid(attention_scores) * attention_mask |
|
return self.compute_output(attention_probs, value), attention_probs.detach() |
|
|
|
|
|
class Embedding(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.word_layer_norm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False |
|
) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.relative_embedding = nn.Parameter( |
|
torch.empty(2 * config.position_bucket_size - 1, config.hidden_size) |
|
) |
|
self.relative_layer_norm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps |
|
) |
|
|
|
self.initialize() |
|
|
|
def initialize(self): |
|
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) |
|
nn.init.trunc_normal_( |
|
self.relative_embedding, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
nn.init.trunc_normal_( |
|
self.word_embedding.weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
|
|
def forward(self, input_ids): |
|
word_embedding = self.dropout( |
|
self.word_layer_norm(self.word_embedding(input_ids)) |
|
) |
|
relative_embeddings = self.relative_layer_norm(self.relative_embedding) |
|
return word_embedding, relative_embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LtgBertPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = LtgBertConfig |
|
base_model_prefix = "bnc-bert" |
|
supports_gradient_checkpointing = True |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, Encoder): |
|
module.activation_checkpointing = value |
|
|
|
def _init_weights(self, _): |
|
pass |
|
|
|
|
|
LTG_BERT_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
Parameters: |
|
config ([`LtgBertConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
LTG_BERT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LTG-BERT transformer outputting raw hidden-states without any specific head on top.", |
|
LTG_BERT_START_DOCSTRING, |
|
) |
|
class LtgBertModel(LtgBertPreTrainedModel): |
|
def __init__(self, config, add_mlm_layer=False): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embedding = Embedding(config) |
|
self.parser_network = ParserNetwork(config, pad=config.pad_token_id) |
|
self.transformer = Encoder(config, activation_checkpointing=False) |
|
self.classifier = ( |
|
MaskClassifier(config, self.embedding.word_embedding.weight) |
|
if add_mlm_layer |
|
else None |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embedding.word_embedding |
|
|
|
def set_input_embeddings(self, value): |
|
self.embedding.word_embedding = value |
|
|
|
def get_contextualized_embeddings( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> List[torch.Tensor]: |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
raise ValueError("You have to specify input_ids") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device |
|
|
|
static_embeddings, relative_embedding = self.embedding(input_ids.t()) |
|
att_mask, cibling, head, block = self.parser_network( |
|
input_ids.t(), static_embeddings |
|
) |
|
contextualized_embeddings, attention_probs = self.transformer( |
|
static_embeddings, att_mask, relative_embedding |
|
) |
|
contextualized_embeddings = [ |
|
e.transpose(0, 1) for e in contextualized_embeddings |
|
] |
|
last_layer = contextualized_embeddings[-1] |
|
contextualized_embeddings = [contextualized_embeddings[0]] + [ |
|
contextualized_embeddings[i] - contextualized_embeddings[i - 1] |
|
for i in range(1, len(contextualized_embeddings)) |
|
] |
|
return last_layer, contextualized_embeddings, attention_probs |
|
|
|
@add_start_docstrings_to_model_forward( |
|
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutput]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
( |
|
sequence_output, |
|
contextualized_embeddings, |
|
attention_probs, |
|
) = self.get_contextualized_embeddings(input_ids, attention_mask) |
|
|
|
if not return_dict: |
|
return ( |
|
sequence_output, |
|
*([contextualized_embeddings] if output_hidden_states else []), |
|
*([attention_probs] if output_attentions else []), |
|
) |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=sequence_output, |
|
hidden_states=contextualized_embeddings if output_hidden_states else None, |
|
attentions=attention_probs if output_attentions else None, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""LTG-BERT model with a `language modeling` head on top.""", |
|
LTG_BERT_START_DOCSTRING, |
|
) |
|
class LtgBertForMaskedLM(LtgBertModel): |
|
_keys_to_ignore_on_load_unexpected = ["head"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config, add_mlm_layer=True) |
|
|
|
def get_output_embeddings(self): |
|
return self.classifier.nonlinearity[-1].weight |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.classifier.nonlinearity[-1].weight = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward( |
|
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
( |
|
sequence_output, |
|
contextualized_embeddings, |
|
attention_probs, |
|
) = self.get_contextualized_embeddings(input_ids, attention_mask) |
|
subword_prediction = self.classifier(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
masked_lm_loss = F.cross_entropy( |
|
subword_prediction.flatten(0, 1), labels.flatten() |
|
) |
|
|
|
if not return_dict: |
|
output = ( |
|
subword_prediction, |
|
*([contextualized_embeddings] if output_hidden_states else []), |
|
*([attention_probs] if output_attentions else []), |
|
) |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=subword_prediction, |
|
hidden_states=contextualized_embeddings if output_hidden_states else None, |
|
attentions=attention_probs if output_attentions else None, |
|
) |
|
|
|
|
|
class Classifier(nn.Module): |
|
def __init__(self, config, num_labels: int): |
|
super().__init__() |
|
|
|
drop_out = getattr(config, "classifier_dropout", config.hidden_dropout_prob) |
|
|
|
self.nonlinearity = nn.Sequential( |
|
nn.LayerNorm( |
|
config.hidden_size, config.layer_norm_eps, elementwise_affine=False |
|
), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.GELU(), |
|
nn.LayerNorm( |
|
config.hidden_size, config.layer_norm_eps, elementwise_affine=False |
|
), |
|
nn.Dropout(drop_out), |
|
nn.Linear(config.hidden_size, num_labels), |
|
) |
|
self.initialize(config.hidden_size) |
|
|
|
def initialize(self, hidden_size): |
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
nn.init.trunc_normal_( |
|
self.nonlinearity[1].weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
nn.init.trunc_normal_( |
|
self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2 * std, b=2 * std |
|
) |
|
self.nonlinearity[1].bias.data.zero_() |
|
self.nonlinearity[-1].bias.data.zero_() |
|
|
|
def forward(self, x): |
|
x = self.nonlinearity(x) |
|
return x |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
LTG-BERT model with a sequence classification/regression head on top (a linear layer on top of the pooled |
|
output) e.g. for GLUE tasks. |
|
""", |
|
LTG_BERT_START_DOCSTRING, |
|
) |
|
class LtgBertForSequenceClassification(LtgBertModel): |
|
_keys_to_ignore_on_load_unexpected = ["classifier"] |
|
_keys_to_ignore_on_load_missing = ["head"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config, add_mlm_layer=False) |
|
|
|
self.num_labels = config.num_labels |
|
self.head = Classifier(config, self.num_labels) |
|
|
|
@add_start_docstrings_to_model_forward( |
|
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
( |
|
sequence_output, |
|
contextualized_embeddings, |
|
attention_probs, |
|
) = self.get_contextualized_embeddings(input_ids, attention_mask) |
|
logits = self.head(sequence_output[:, 0, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = nn.MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = nn.BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = ( |
|
logits, |
|
*([contextualized_embeddings] if output_hidden_states else []), |
|
*([attention_probs] if output_attentions else []), |
|
) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=contextualized_embeddings if output_hidden_states else None, |
|
attentions=attention_probs if output_attentions else None, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
LTG-BERT model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
LTG_BERT_START_DOCSTRING, |
|
) |
|
class LtgBertForTokenClassification(LtgBertModel): |
|
_keys_to_ignore_on_load_unexpected = ["classifier"] |
|
_keys_to_ignore_on_load_missing = ["head"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config, add_mlm_layer=False) |
|
|
|
self.num_labels = config.num_labels |
|
self.head = Classifier(config, self.num_labels) |
|
|
|
@add_start_docstrings_to_model_forward( |
|
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
( |
|
sequence_output, |
|
contextualized_embeddings, |
|
attention_probs, |
|
) = self.get_contextualized_embeddings(input_ids, attention_mask) |
|
logits = self.head(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = ( |
|
logits, |
|
*([contextualized_embeddings] if output_hidden_states else []), |
|
*([attention_probs] if output_attentions else []), |
|
) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=contextualized_embeddings if output_hidden_states else None, |
|
attentions=attention_probs if output_attentions else None, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
LTG-BERT model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear |
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
LTG_BERT_START_DOCSTRING, |
|
) |
|
class LtgBertForQuestionAnswering(LtgBertModel): |
|
_keys_to_ignore_on_load_unexpected = ["classifier"] |
|
_keys_to_ignore_on_load_missing = ["head"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config, add_mlm_layer=False) |
|
|
|
self.num_labels = config.num_labels |
|
self.head = Classifier(config, self.num_labels) |
|
|
|
@add_start_docstrings_to_model_forward( |
|
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
start_positions: Optional[torch.Tensor] = None, |
|
end_positions: Optional[torch.Tensor] = None, |
|
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
( |
|
sequence_output, |
|
contextualized_embeddings, |
|
attention_probs, |
|
) = self.get_contextualized_embeddings(input_ids, attention_mask) |
|
logits = self.head(sequence_output) |
|
|
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = ( |
|
start_logits, |
|
end_logits, |
|
*([contextualized_embeddings] if output_hidden_states else []), |
|
*([attention_probs] if output_attentions else []), |
|
) |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=contextualized_embeddings if output_hidden_states else None, |
|
attentions=attention_probs if output_attentions else None, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
LTG-BERT model with a multiple choice classification head on top (a linear layer on top of the pooled output and a |
|
softmax) e.g. for RocStories/SWAG tasks. |
|
""", |
|
LTG_BERT_START_DOCSTRING, |
|
) |
|
class LtgBertForMultipleChoice(LtgBertModel): |
|
_keys_to_ignore_on_load_unexpected = ["classifier"] |
|
_keys_to_ignore_on_load_missing = ["head"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config, add_mlm_layer=False) |
|
|
|
self.num_labels = getattr(config, "num_labels", 2) |
|
self.head = Classifier(config, self.num_labels) |
|
|
|
@add_start_docstrings_to_model_forward( |
|
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
num_choices = input_ids.shape[1] |
|
|
|
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) |
|
flat_attention_mask = ( |
|
attention_mask.view(-1, attention_mask.size(-1)) |
|
if attention_mask is not None |
|
else None |
|
) |
|
|
|
( |
|
sequence_output, |
|
contextualized_embeddings, |
|
attention_probs, |
|
) = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask) |
|
logits = self.head(sequence_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
|
|
if not return_dict: |
|
output = ( |
|
reshaped_logits, |
|
*([contextualized_embeddings] if output_hidden_states else []), |
|
*([attention_probs] if output_attentions else []), |
|
) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=reshaped_logits, |
|
hidden_states=contextualized_embeddings if output_hidden_states else None, |
|
attentions=attention_probs if output_attentions else None, |
|
) |
|
|