“SufurElite”
commited on
Commit
•
eff5003
1
Parent(s):
47af08a
init
Browse files- ELC_ParserBERT_10M_textonly_predictions.json.gz +3 -0
- LICENSE +202 -0
- README.md +92 -0
- __init__.py +0 -0
- config.json +26 -0
- configuration_ltgbert.py +106 -0
- modeling_ltgbert.py +1294 -0
- pytorch_model.bin +3 -0
- results.md +125 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +4 -0
ELC_ParserBERT_10M_textonly_predictions.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62805b3ad647effbdd913914d89158d728eec3c044ba4daf136b4f245d85b8f4
|
3 |
+
size 1184499
|
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,3 +1,95 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
# ELC-ParserBERT
|
6 |
+
|
7 |
+
This model is an adaptation of the [Every Layer Counts BERT model](<https://aclanthology.org/2023.conll-babylm.20/>), but it incorporates the `Parser Network` from the [StructFormer](<https://arxiv.org/abs/2012.00857>). It was trained for the [BabyLM 2024 challenge](https://babylm.github.io/index.html)'s Strict-Small track.
|
8 |
+
|
9 |
+
## Dataset
|
10 |
+
|
11 |
+
The training data for the challenge can be accessed through OSF [here](https://osf.io/ad7qg/). This model was trained on the 10M token training dataset.
|
12 |
+
|
13 |
+
### Order in Pretraining
|
14 |
+
|
15 |
+
After the segmentation of the data, the segements are ordered in increasing difficulty according to the flesch_reading_ease metric. This ordering can either be maintained by not including the shuffle flag when training or rejected (and allowing shuffling of the data to happen); this model did shuffle the data.
|
16 |
+
|
17 |
+
## Hyperparameters
|
18 |
+
|
19 |
+
### Base Model
|
20 |
+
|
21 |
+
| Hyperparameter | Value |
|
22 |
+
| -------------- | ----- |
|
23 |
+
| Initial learning rate | 5e-3 |
|
24 |
+
| Batch size | 256 |
|
25 |
+
| Steps | 13495 |
|
26 |
+
| shuffled | True |
|
27 |
+
|attention_probs_dropout_prob | 0.1 |
|
28 |
+
| classifier_dropout | 0.2 |
|
29 |
+
| hidden_dropout_prob | 0.1 |
|
30 |
+
| hidden_size | 384 |
|
31 |
+
| intermediate_size | 1024 |
|
32 |
+
| layer_norm_eps | 1e-07 |
|
33 |
+
| max_position_embeddings | 512 |
|
34 |
+
| num_attention_heads | 6 |
|
35 |
+
| num_hidden_layers | 12 |
|
36 |
+
| vocab_size | 16384 |
|
37 |
+
| n_parser_layers | 4 |
|
38 |
+
| parser_conv_size |9 |
|
39 |
+
|
40 |
+
### Fine-tuning
|
41 |
+
|
42 |
+
The fine-tuning parameters were unchanged from the organizer outside of following the ELC-BERT model's patience approach for last year, in particular:
|
43 |
+
|
44 |
+
| Hyperparameter | Value |
|
45 |
+
| -------------- | ----- |
|
46 |
+
| Initial learning rate | 5e-5 |
|
47 |
+
| Batch size | 64 |
|
48 |
+
| Maximum epochs | 10 |
|
49 |
+
| Evaluate every (epochs) | 1 |
|
50 |
+
| Patience | 10 (for CoLA, MRPC, RTE, BoolQ, MultiRC, and WSC), 100 (for MNLI, MNLI-MM, QQP, QNLI, and SST-2) |
|
51 |
+
| Seed | 12 |
|
52 |
+
|
53 |
+
## Credit
|
54 |
+
|
55 |
+
As mentioned above, this model is an adapatation of Every Layer Counts (ELC) BERT and StructFormer, the citations and code repositories for which can be found here
|
56 |
+
|
57 |
+
* StructFormer
|
58 |
+
* [StructFormer Github](<https://github.com/google-research/google-research/tree/master/structformer>)
|
59 |
+
|
60 |
+
* ```bibtex
|
61 |
+
@misc{shen2020structformer,
|
62 |
+
title={StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling},
|
63 |
+
author={Yikang Shen and Yi Tay and Che Zheng and Dara Bahri and Donald Metzler and Aaron Courville},
|
64 |
+
year={2020},
|
65 |
+
eprint={2012.00857},
|
66 |
+
archivePrefix={arXiv},
|
67 |
+
primaryClass={cs.CL}}```
|
68 |
+
* ELC-BERT:
|
69 |
+
* [ELC-BERT Github](<https://github.com/ltgoslo/elc-bert>)
|
70 |
+
* [ELC-BERT 10M Hugging Face](https://huggingface.co/lgcharpe/ELC_BERT_small_baby_10M)
|
71 |
+
* ```bibtex
|
72 |
+
@inproceedings{georges-gabriel-charpentier-samuel-2023-layers,
|
73 |
+
title = "Not all layers are equally as important: Every Layer Counts {BERT}",
|
74 |
+
author = "Georges Gabriel Charpentier, Lucas and
|
75 |
+
Samuel, David",
|
76 |
+
editor = "Warstadt, Alex and
|
77 |
+
Mueller, Aaron and
|
78 |
+
Choshen, Leshem and
|
79 |
+
Wilcox, Ethan and
|
80 |
+
Zhuang, Chengxu and
|
81 |
+
Ciro, Juan and
|
82 |
+
Mosquera, Rafael and
|
83 |
+
Paranjabe, Bhargavi and
|
84 |
+
Williams, Adina and
|
85 |
+
Linzen, Tal and
|
86 |
+
Cotterell, Ryan",
|
87 |
+
booktitle = "Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning",
|
88 |
+
month = dec,
|
89 |
+
year = "2023",
|
90 |
+
address = "Singapore",
|
91 |
+
publisher = "Association for Computational Linguistics",
|
92 |
+
url = "https://aclanthology.org/2023.conll-babylm.20",
|
93 |
+
doi = "10.18653/v1/2023.conll-babylm.20",
|
94 |
+
pages = "238--252",
|
95 |
+
}```
|
__init__.py
ADDED
File without changes
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LtgBertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_ltgbert.LtgBertConfig",
|
8 |
+
"AutoModelForMaskedLM": "modeling_ltgbert.LtgBertForMaskedLM",
|
9 |
+
"AutoModelForSequenceClassification": "modeling_ltgbert.LtgBertForSequenceClassification"
|
10 |
+
},
|
11 |
+
"classifier_dropout": 0.2,
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 384,
|
14 |
+
"intermediate_size": 1024,
|
15 |
+
"layer_norm_eps": 1e-07,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "ltgbert",
|
18 |
+
"num_attention_heads": 6,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_all_encoded_layers": true,
|
21 |
+
"pad_token_id": 3,
|
22 |
+
"position_bucket_size": 32,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.26.0",
|
25 |
+
"vocab_size": 16384
|
26 |
+
}
|
configuration_ltgbert.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" LTG-BERT configutation """
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
|
21 |
+
|
22 |
+
LTG_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
23 |
+
"bnc-bert-span": "https://huggingface.co/ltg/bnc-bert-span",
|
24 |
+
"bnc-bert-span-2x": "https://huggingface.co/ltg/bnc-bert-span-2x",
|
25 |
+
"bnc-bert-span-0.5x": "https://huggingface.co/ltg/bnc-bert-span-0.5x",
|
26 |
+
"bnc-bert-span-0.25x": "https://huggingface.co/ltg/bnc-bert-span-0.25x",
|
27 |
+
"bnc-bert-span-order": "https://huggingface.co/ltg/bnc-bert-span-order",
|
28 |
+
"bnc-bert-span-document": "https://huggingface.co/ltg/bnc-bert-span-document",
|
29 |
+
"bnc-bert-span-word": "https://huggingface.co/ltg/bnc-bert-span-word",
|
30 |
+
"bnc-bert-span-subword": "https://huggingface.co/ltg/bnc-bert-span-subword",
|
31 |
+
"norbert3-xs": "https://huggingface.co/ltg/norbert3-xs/config.json",
|
32 |
+
"norbert3-small": "https://huggingface.co/ltg/norbert3-small/config.json",
|
33 |
+
"norbert3-base": "https://huggingface.co/ltg/norbert3-base/config.json",
|
34 |
+
"norbert3-large": "https://huggingface.co/ltg/norbert3-large/config.json",
|
35 |
+
"norbert3-oversampled-base": "https://huggingface.co/ltg/norbert3-oversampled-base/config.json",
|
36 |
+
"norbert3-ncc-base": "https://huggingface.co/ltg/norbert3-ncc-base/config.json",
|
37 |
+
"norbert3-nak-base": "https://huggingface.co/ltg/norbert3-nak-base/config.json",
|
38 |
+
"norbert3-nb-base": "https://huggingface.co/ltg/norbert3-nb-base/config.json",
|
39 |
+
"norbert3-wiki-base": "https://huggingface.co/ltg/norbert3-wiki-base/config.json",
|
40 |
+
"norbert3-c4-base": "https://huggingface.co/ltg/norbert3-c4-base/config.json",
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
class LtgBertConfig(PretrainedConfig):
|
45 |
+
r"""
|
46 |
+
This is the configuration class to store the configuration of a [`LtgBertModel`]. It is used to
|
47 |
+
instantiate an LTG-BERT model according to the specified arguments, defining the model architecture.
|
48 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
49 |
+
documentation from [`PretrainedConfig`] for more information.
|
50 |
+
Args:
|
51 |
+
vocab_size (`int`, *optional*, defaults to 16384):
|
52 |
+
Vocabulary size of the LTG-BERT model. Defines the number of different tokens that can be represented by the
|
53 |
+
`inputs_ids` passed when calling [`LtgBertModel`].
|
54 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
55 |
+
Dimensionality of the encoder layers and the pooler layer.
|
56 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
57 |
+
Number of hidden layers in the Transformer encoder.
|
58 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
59 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
60 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
61 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
62 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
64 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
65 |
+
The dropout ratio for the attention probabilities.
|
66 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
67 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
68 |
+
just in case (e.g., 512 or 1024 or 2048).
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
classifier_dropout (`float`, *optional*):
|
72 |
+
The dropout ratio for the classification head.
|
73 |
+
"""
|
74 |
+
model_type = "ltgbert"
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
vocab_size=16384,
|
79 |
+
attention_probs_dropout_prob=0.1,
|
80 |
+
hidden_dropout_prob=0.1,
|
81 |
+
hidden_size=768,
|
82 |
+
intermediate_size=2048,
|
83 |
+
max_position_embeddings=512,
|
84 |
+
position_bucket_size=32,
|
85 |
+
num_attention_heads=12,
|
86 |
+
num_hidden_layers=12,
|
87 |
+
layer_norm_eps=1.0e-7,
|
88 |
+
pad_token_id=4,
|
89 |
+
output_all_encoded_layers=True,
|
90 |
+
classifier_dropout=None,
|
91 |
+
**kwargs,
|
92 |
+
):
|
93 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
94 |
+
|
95 |
+
self.vocab_size = vocab_size
|
96 |
+
self.hidden_size = hidden_size
|
97 |
+
self.num_hidden_layers = num_hidden_layers
|
98 |
+
self.num_attention_heads = num_attention_heads
|
99 |
+
self.intermediate_size = intermediate_size
|
100 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
101 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
102 |
+
self.max_position_embeddings = max_position_embeddings
|
103 |
+
self.output_all_encoded_layers = output_all_encoded_layers
|
104 |
+
self.position_bucket_size = position_bucket_size
|
105 |
+
self.layer_norm_eps = layer_norm_eps
|
106 |
+
self.classifier_dropout = classifier_dropout
|
modeling_ltgbert.py
ADDED
@@ -0,0 +1,1294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team.
|
3 |
+
# And Copyright 2024 The Google Research Authors.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
# Base implementation of the LTG-BERT/ELC-BERT Model is from Language Technology Group from University of Oslo and The HuggingFace Inc., Team
|
18 |
+
# The StructFormer components is from The Google Research Authors - the authors were Yikang Shen and Yi Tay and Che Zheng and Dara Bahri and Donald Metzler and Aaron Courville
|
19 |
+
# (and the code can be from here: https://github.com/google-research/google-research/tree/master/structformer), both were using Apache license, Version 2.0
|
20 |
+
|
21 |
+
""" PyTorch LTG-(ELC)-ParserBERT model."""
|
22 |
+
|
23 |
+
|
24 |
+
import math
|
25 |
+
from typing import List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
import torch.nn.functional as F
|
30 |
+
from torch.utils import checkpoint
|
31 |
+
|
32 |
+
from .configuration_ltgbert import LtgBertConfig
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.activations import gelu_new
|
35 |
+
from transformers.modeling_outputs import (
|
36 |
+
MaskedLMOutput,
|
37 |
+
MultipleChoiceModelOutput,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutput,
|
40 |
+
TokenClassifierOutput,
|
41 |
+
BaseModelOutput,
|
42 |
+
)
|
43 |
+
from transformers.pytorch_utils import softmax_backward_data
|
44 |
+
from transformers.utils import (
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
_CHECKPOINT_FOR_DOC = "ltg/bnc-bert-span"
|
51 |
+
_CONFIG_FOR_DOC = "LtgBertConfig"
|
52 |
+
|
53 |
+
|
54 |
+
LTG_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
55 |
+
"bnc-bert-span",
|
56 |
+
"bnc-bert-span-2x",
|
57 |
+
"bnc-bert-span-0.5x",
|
58 |
+
"bnc-bert-span-0.25x",
|
59 |
+
"bnc-bert-span-order",
|
60 |
+
"bnc-bert-span-document",
|
61 |
+
"bnc-bert-span-word",
|
62 |
+
"bnc-bert-span-subword",
|
63 |
+
"norbert3-xs",
|
64 |
+
"norbert3-small",
|
65 |
+
"norbert3-base",
|
66 |
+
"norbert3-large",
|
67 |
+
"norbert3-oversampled-base",
|
68 |
+
"norbert3-ncc-base",
|
69 |
+
"norbert3-nak-base",
|
70 |
+
"norbert3-nb-base",
|
71 |
+
"norbert3-wiki-base",
|
72 |
+
"norbert3-c4-base",
|
73 |
+
]
|
74 |
+
|
75 |
+
|
76 |
+
class Conv1d(nn.Module):
|
77 |
+
"""1D convolution layer."""
|
78 |
+
|
79 |
+
def __init__(self, hidden_size, kernel_size, dilation=1):
|
80 |
+
"""Initialization.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
hidden_size: dimension of input embeddings
|
84 |
+
kernel_size: convolution kernel size
|
85 |
+
dilation: the spacing between the kernel points
|
86 |
+
"""
|
87 |
+
super(Conv1d, self).__init__()
|
88 |
+
|
89 |
+
if kernel_size % 2 == 0:
|
90 |
+
padding = (kernel_size // 2) * dilation
|
91 |
+
self.shift = True
|
92 |
+
else:
|
93 |
+
padding = ((kernel_size - 1) // 2) * dilation
|
94 |
+
self.shift = False
|
95 |
+
self.conv = nn.Conv1d(
|
96 |
+
hidden_size, hidden_size, kernel_size, padding=padding, dilation=dilation
|
97 |
+
)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
"""Compute convolution.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
x: input embeddings
|
104 |
+
Returns:
|
105 |
+
conv_output: convolution results
|
106 |
+
"""
|
107 |
+
|
108 |
+
if self.shift:
|
109 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:]
|
110 |
+
else:
|
111 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)
|
112 |
+
|
113 |
+
|
114 |
+
def cumprod(x, reverse=False, exclusive=False):
|
115 |
+
"""cumulative product."""
|
116 |
+
if reverse:
|
117 |
+
x = x.flip([-1])
|
118 |
+
|
119 |
+
if exclusive:
|
120 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=1)
|
121 |
+
|
122 |
+
cx = x.cumprod(-1)
|
123 |
+
|
124 |
+
if reverse:
|
125 |
+
cx = cx.flip([-1])
|
126 |
+
return cx
|
127 |
+
|
128 |
+
|
129 |
+
def cumsum(x, reverse=False, exclusive=False):
|
130 |
+
"""cumulative sum."""
|
131 |
+
bsz, _, length = x.size()
|
132 |
+
device = x.device
|
133 |
+
if reverse:
|
134 |
+
if exclusive:
|
135 |
+
w = torch.ones([bsz, length, length], device=device).tril(-1)
|
136 |
+
else:
|
137 |
+
w = torch.ones([bsz, length, length], device=device).tril(0)
|
138 |
+
cx = torch.bmm(x, w)
|
139 |
+
else:
|
140 |
+
if exclusive:
|
141 |
+
w = torch.ones([bsz, length, length], device=device).triu(1)
|
142 |
+
else:
|
143 |
+
w = torch.ones([bsz, length, length], device=device).triu(0)
|
144 |
+
cx = torch.bmm(x, w)
|
145 |
+
return cx
|
146 |
+
|
147 |
+
|
148 |
+
def cummin(x, reverse=False, exclusive=False, max_value=1e4):
|
149 |
+
"""cumulative min."""
|
150 |
+
if reverse:
|
151 |
+
if exclusive:
|
152 |
+
x = F.pad(x[:, :, 1:], (0, 1), value=max_value)
|
153 |
+
x = x.flip([-1]).cummin(-1)[0].flip([-1])
|
154 |
+
else:
|
155 |
+
if exclusive:
|
156 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=max_value)
|
157 |
+
x = x.cummin(-1)[0]
|
158 |
+
return x
|
159 |
+
|
160 |
+
|
161 |
+
class ParserNetwork(nn.Module):
|
162 |
+
def __init__(
|
163 |
+
self,
|
164 |
+
config,
|
165 |
+
pad=0,
|
166 |
+
n_parser_layers=4,
|
167 |
+
conv_size=9,
|
168 |
+
relations=("head", "child"),
|
169 |
+
weight_act="softmax",
|
170 |
+
):
|
171 |
+
"""
|
172 |
+
hidden_size: dimension of input embeddings
|
173 |
+
nlayers: number of layers
|
174 |
+
ntokens: number of output categories
|
175 |
+
nhead: number of self-attention heads
|
176 |
+
dropout: dropout rate
|
177 |
+
pad: pad token index
|
178 |
+
n_parser_layers: number of parsing layers
|
179 |
+
conv_size: convolution kernel size for parser
|
180 |
+
relations: relations that are used to compute self attention
|
181 |
+
weight_act: relations distribution activation function
|
182 |
+
"""
|
183 |
+
super(ParserNetwork, self).__init__()
|
184 |
+
self.hidden_size = config.hidden_size
|
185 |
+
self.num_hidden_layers = config.num_hidden_layers
|
186 |
+
self.num_attention_heads = config.num_attention_heads
|
187 |
+
|
188 |
+
self.parser_layers = nn.ModuleList(
|
189 |
+
[
|
190 |
+
nn.Sequential(
|
191 |
+
Conv1d(self.hidden_size, conv_size),
|
192 |
+
nn.LayerNorm(self.hidden_size, elementwise_affine=False),
|
193 |
+
nn.Tanh(),
|
194 |
+
)
|
195 |
+
for _ in range(n_parser_layers)
|
196 |
+
]
|
197 |
+
)
|
198 |
+
|
199 |
+
self.distance_ff = nn.Sequential(
|
200 |
+
Conv1d(self.hidden_size, 2),
|
201 |
+
nn.LayerNorm(self.hidden_size, elementwise_affine=False),
|
202 |
+
nn.Tanh(),
|
203 |
+
nn.Linear(self.hidden_size, 1),
|
204 |
+
)
|
205 |
+
|
206 |
+
self.height_ff = nn.Sequential(
|
207 |
+
nn.Linear(self.hidden_size, self.hidden_size),
|
208 |
+
nn.LayerNorm(self.hidden_size, elementwise_affine=False),
|
209 |
+
nn.Tanh(),
|
210 |
+
nn.Linear(self.hidden_size, 1),
|
211 |
+
)
|
212 |
+
|
213 |
+
n_rel = len(relations)
|
214 |
+
self._rel_weight = nn.Parameter(
|
215 |
+
torch.zeros((self.num_hidden_layers, self.num_attention_heads, n_rel))
|
216 |
+
)
|
217 |
+
self._rel_weight.data.normal_(0, 0.1)
|
218 |
+
|
219 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
220 |
+
|
221 |
+
self.n_parse_layers = n_parser_layers
|
222 |
+
self.weight_act = weight_act
|
223 |
+
self.relations = relations
|
224 |
+
self.pad = pad
|
225 |
+
|
226 |
+
@property
|
227 |
+
def scaler(self):
|
228 |
+
return self._scaler.exp()
|
229 |
+
|
230 |
+
@property
|
231 |
+
def rel_weight(self):
|
232 |
+
if self.weight_act == "sigmoid":
|
233 |
+
return torch.sigmoid(self._rel_weight)
|
234 |
+
elif self.weight_act == "softmax":
|
235 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
236 |
+
|
237 |
+
def parse(self, x, h):
|
238 |
+
"""
|
239 |
+
Parse input sentence.
|
240 |
+
Args:
|
241 |
+
x: input tokens (required).
|
242 |
+
h: static embeddings
|
243 |
+
Returns:
|
244 |
+
distance: syntactic distance
|
245 |
+
height: syntactic height
|
246 |
+
"""
|
247 |
+
|
248 |
+
mask = x != self.pad
|
249 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
250 |
+
|
251 |
+
for i in range(self.n_parse_layers):
|
252 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
253 |
+
h = self.parser_layers[i](h)
|
254 |
+
|
255 |
+
height = self.height_ff(h).squeeze(-1)
|
256 |
+
height.masked_fill_(~mask, -1e4)
|
257 |
+
|
258 |
+
distance = self.distance_ff(h).squeeze(-1)
|
259 |
+
distance.masked_fill_(~mask_shifted, 1e4)
|
260 |
+
|
261 |
+
# Calbrating the distance and height to the same level
|
262 |
+
length = distance.size(1)
|
263 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
264 |
+
height_max = torch.cummax(
|
265 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e4, dim=-1
|
266 |
+
)[0].triu(0)
|
267 |
+
|
268 |
+
margin_left = torch.relu(
|
269 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e4) - height_max
|
270 |
+
)
|
271 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
272 |
+
margin = torch.where(
|
273 |
+
margin_left > margin_right, margin_right, margin_left
|
274 |
+
).triu(0)
|
275 |
+
|
276 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
277 |
+
margin.masked_fill_(~margin_mask, 0)
|
278 |
+
margin = margin.max()
|
279 |
+
|
280 |
+
distance = distance - margin
|
281 |
+
|
282 |
+
return distance, height
|
283 |
+
|
284 |
+
def compute_block(self, distance, height):
|
285 |
+
"""Compute constituents from distance and height."""
|
286 |
+
|
287 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
288 |
+
|
289 |
+
gamma = torch.sigmoid(-beta_logits)
|
290 |
+
ones = torch.ones_like(gamma)
|
291 |
+
|
292 |
+
block_mask_left = cummin(
|
293 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
294 |
+
)
|
295 |
+
block_mask_left = block_mask_left - F.pad(
|
296 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
297 |
+
)
|
298 |
+
block_mask_left.tril_(0)
|
299 |
+
|
300 |
+
block_mask_right = cummin(
|
301 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
302 |
+
)
|
303 |
+
block_mask_right = block_mask_right - F.pad(
|
304 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
305 |
+
)
|
306 |
+
block_mask_right.triu_(0)
|
307 |
+
|
308 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
309 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
310 |
+
block_mask_right, reverse=True
|
311 |
+
).triu(1)
|
312 |
+
|
313 |
+
return block_p, block
|
314 |
+
|
315 |
+
def compute_head(self, height):
|
316 |
+
"""Estimate head for each constituent."""
|
317 |
+
|
318 |
+
_, length = height.size()
|
319 |
+
head_logits = height * self.scaler[1]
|
320 |
+
index = torch.arange(length, device=height.device)
|
321 |
+
|
322 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
323 |
+
index[None, None, :] <= index[None, :, None]
|
324 |
+
)
|
325 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
326 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e4)
|
327 |
+
|
328 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
329 |
+
|
330 |
+
return head_p
|
331 |
+
|
332 |
+
def generate_mask(self, x, distance, height):
|
333 |
+
"""Compute head and cibling distribution for each token."""
|
334 |
+
|
335 |
+
batch_size, length = x.size()
|
336 |
+
|
337 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
338 |
+
eye = eye[None, :, :].expand((batch_size, -1, -1))
|
339 |
+
|
340 |
+
block_p, block = self.compute_block(distance, height)
|
341 |
+
head_p = self.compute_head(height)
|
342 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
343 |
+
head = head.masked_fill(eye, 0)
|
344 |
+
child = head.transpose(1, 2)
|
345 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
346 |
+
|
347 |
+
rel_list = []
|
348 |
+
if "head" in self.relations:
|
349 |
+
rel_list.append(head)
|
350 |
+
if "child" in self.relations:
|
351 |
+
rel_list.append(child)
|
352 |
+
if "cibling" in self.relations:
|
353 |
+
rel_list.append(cibling)
|
354 |
+
|
355 |
+
rel = torch.stack(rel_list, dim=1)
|
356 |
+
|
357 |
+
rel_weight = self.rel_weight
|
358 |
+
|
359 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
360 |
+
att_mask = dep.reshape(
|
361 |
+
self.num_hidden_layers, batch_size, self.num_attention_heads, length, length
|
362 |
+
)
|
363 |
+
|
364 |
+
return att_mask, cibling, head, block
|
365 |
+
|
366 |
+
def forward(self, x, embeddings):
|
367 |
+
"""
|
368 |
+
Pass the x tokens through the parse network, get the syntactic height and distances
|
369 |
+
and compute the distribution for each token
|
370 |
+
"""
|
371 |
+
|
372 |
+
x = torch.transpose(x, 0, 1)
|
373 |
+
embeddings = torch.transpose(embeddings, 0, 1)
|
374 |
+
|
375 |
+
distance, height = self.parse(x, embeddings)
|
376 |
+
att_mask, cibling, head, block = self.generate_mask(x, distance, height)
|
377 |
+
return att_mask, cibling, head, block
|
378 |
+
|
379 |
+
|
380 |
+
class Encoder(nn.Module):
|
381 |
+
def __init__(self, config, activation_checkpointing=False):
|
382 |
+
super().__init__()
|
383 |
+
self.layers = nn.ModuleList(
|
384 |
+
[EncoderLayer(config, i) for i in range(config.num_hidden_layers)]
|
385 |
+
)
|
386 |
+
|
387 |
+
for i, layer in enumerate(self.layers):
|
388 |
+
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
389 |
+
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
390 |
+
|
391 |
+
self.activation_checkpointing = activation_checkpointing
|
392 |
+
|
393 |
+
def forward(self, hidden_states, attention_mask, relative_embedding):
|
394 |
+
hidden_states, attention_probs = [hidden_states], []
|
395 |
+
|
396 |
+
for i in range(len(self.layers)):
|
397 |
+
if self.activation_checkpointing:
|
398 |
+
hidden_state, attention_p = checkpoint.checkpoint(
|
399 |
+
self.layers[i], hidden_states, attention_mask, relative_embedding
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
hidden_state, attention_p = self.layers[i](
|
403 |
+
hidden_states, attention_mask[i], relative_embedding
|
404 |
+
)
|
405 |
+
|
406 |
+
hidden_states.append(hidden_state)
|
407 |
+
attention_probs.append(attention_p)
|
408 |
+
|
409 |
+
return hidden_states, attention_probs
|
410 |
+
|
411 |
+
|
412 |
+
class MaskClassifier(nn.Module):
|
413 |
+
def __init__(self, config, subword_embedding):
|
414 |
+
super().__init__()
|
415 |
+
self.nonlinearity = nn.Sequential(
|
416 |
+
nn.LayerNorm(
|
417 |
+
config.hidden_size, config.layer_norm_eps, elementwise_affine=False
|
418 |
+
),
|
419 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
420 |
+
nn.GELU(),
|
421 |
+
nn.LayerNorm(
|
422 |
+
config.hidden_size, config.layer_norm_eps, elementwise_affine=False
|
423 |
+
),
|
424 |
+
nn.Dropout(config.hidden_dropout_prob),
|
425 |
+
nn.Linear(subword_embedding.size(1), subword_embedding.size(0)),
|
426 |
+
)
|
427 |
+
self.initialize(config.hidden_size, subword_embedding)
|
428 |
+
|
429 |
+
def initialize(self, hidden_size, embedding):
|
430 |
+
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
431 |
+
nn.init.trunc_normal_(
|
432 |
+
self.nonlinearity[1].weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
433 |
+
)
|
434 |
+
self.nonlinearity[-1].weight = embedding
|
435 |
+
self.nonlinearity[1].bias.data.zero_()
|
436 |
+
self.nonlinearity[-1].bias.data.zero_()
|
437 |
+
|
438 |
+
def forward(self, x, masked_lm_labels=None):
|
439 |
+
if masked_lm_labels is not None:
|
440 |
+
x = torch.index_select(
|
441 |
+
x.flatten(0, 1),
|
442 |
+
0,
|
443 |
+
torch.nonzero(masked_lm_labels.flatten() != -100).squeeze(),
|
444 |
+
)
|
445 |
+
x = self.nonlinearity(x)
|
446 |
+
return x
|
447 |
+
|
448 |
+
|
449 |
+
class EncoderLayer(nn.Module):
|
450 |
+
def __init__(self, config, layer_num):
|
451 |
+
super().__init__()
|
452 |
+
self.attention = Attention(config)
|
453 |
+
self.mlp = FeedForward(config)
|
454 |
+
temp = torch.zeros(layer_num + 1)
|
455 |
+
temp[-1] = 1
|
456 |
+
self.prev_layer_weights = nn.Parameter(temp)
|
457 |
+
|
458 |
+
def forward(self, hidden_states, padding_mask, relative_embedding):
|
459 |
+
prev_layer_weights = F.softmax(self.prev_layer_weights, dim=-1)
|
460 |
+
x = prev_layer_weights[0] * hidden_states[0]
|
461 |
+
for i, hidden_state in enumerate(hidden_states[1:]):
|
462 |
+
x = x + prev_layer_weights[i + 1] * hidden_state
|
463 |
+
attention_output, attention_probs = self.attention(
|
464 |
+
x, padding_mask, relative_embedding
|
465 |
+
)
|
466 |
+
x = attention_output
|
467 |
+
x = x + self.mlp(x)
|
468 |
+
return x, attention_probs
|
469 |
+
|
470 |
+
|
471 |
+
class GeGLU(nn.Module):
|
472 |
+
def forward(self, x):
|
473 |
+
x, gate = x.chunk(2, dim=-1)
|
474 |
+
x = x * gelu_new(gate)
|
475 |
+
return x
|
476 |
+
|
477 |
+
|
478 |
+
class FeedForward(nn.Module):
|
479 |
+
def __init__(self, config):
|
480 |
+
super().__init__()
|
481 |
+
self.mlp = nn.Sequential(
|
482 |
+
nn.LayerNorm(
|
483 |
+
config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False
|
484 |
+
),
|
485 |
+
nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False),
|
486 |
+
GeGLU(),
|
487 |
+
nn.LayerNorm(
|
488 |
+
config.intermediate_size,
|
489 |
+
eps=config.layer_norm_eps,
|
490 |
+
elementwise_affine=False,
|
491 |
+
),
|
492 |
+
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
|
493 |
+
nn.Dropout(config.hidden_dropout_prob),
|
494 |
+
)
|
495 |
+
self.initialize(config.hidden_size)
|
496 |
+
|
497 |
+
def initialize(self, hidden_size):
|
498 |
+
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
499 |
+
nn.init.trunc_normal_(
|
500 |
+
self.mlp[1].weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
501 |
+
)
|
502 |
+
nn.init.trunc_normal_(
|
503 |
+
self.mlp[-2].weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
504 |
+
)
|
505 |
+
|
506 |
+
def forward(self, x):
|
507 |
+
return self.mlp(x)
|
508 |
+
|
509 |
+
|
510 |
+
class MaskedSoftmax(torch.autograd.Function):
|
511 |
+
@staticmethod
|
512 |
+
def forward(self, x, mask, dim):
|
513 |
+
self.dim = dim
|
514 |
+
x.masked_fill_(mask, float("-inf"))
|
515 |
+
x = torch.softmax(x, self.dim)
|
516 |
+
x.masked_fill_(mask, 0.0)
|
517 |
+
self.save_for_backward(x)
|
518 |
+
return x
|
519 |
+
|
520 |
+
@staticmethod
|
521 |
+
def backward(self, grad_output):
|
522 |
+
(output,) = self.saved_tensors
|
523 |
+
input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
|
524 |
+
return input_grad, None, None
|
525 |
+
|
526 |
+
|
527 |
+
class Attention(nn.Module):
|
528 |
+
def __init__(self, config):
|
529 |
+
super().__init__()
|
530 |
+
|
531 |
+
self.config = config
|
532 |
+
|
533 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
534 |
+
raise ValueError(
|
535 |
+
f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}"
|
536 |
+
)
|
537 |
+
|
538 |
+
self.hidden_size = config.hidden_size
|
539 |
+
self.num_heads = config.num_attention_heads
|
540 |
+
self.head_size = config.hidden_size // config.num_attention_heads
|
541 |
+
|
542 |
+
self.in_proj_qk = nn.Linear(
|
543 |
+
config.hidden_size, 2 * config.hidden_size, bias=True
|
544 |
+
)
|
545 |
+
self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
546 |
+
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
547 |
+
|
548 |
+
self.pre_layer_norm = nn.LayerNorm(
|
549 |
+
config.hidden_size, config.layer_norm_eps, elementwise_affine=False
|
550 |
+
)
|
551 |
+
self.post_layer_norm = nn.LayerNorm(
|
552 |
+
config.hidden_size, config.layer_norm_eps, elementwise_affine=True
|
553 |
+
)
|
554 |
+
|
555 |
+
position_indices = torch.arange(
|
556 |
+
config.max_position_embeddings, dtype=torch.long
|
557 |
+
).unsqueeze(1) - torch.arange(
|
558 |
+
config.max_position_embeddings, dtype=torch.long
|
559 |
+
).unsqueeze(
|
560 |
+
0
|
561 |
+
)
|
562 |
+
position_indices = self.make_log_bucket_position(
|
563 |
+
position_indices,
|
564 |
+
config.position_bucket_size,
|
565 |
+
config.max_position_embeddings,
|
566 |
+
)
|
567 |
+
position_indices = config.position_bucket_size - 1 + position_indices
|
568 |
+
self.register_buffer("position_indices", position_indices, persistent=True)
|
569 |
+
|
570 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
571 |
+
self.scale = 1.0 / math.sqrt(3 * self.head_size)
|
572 |
+
self.initialize()
|
573 |
+
|
574 |
+
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
|
575 |
+
sign = torch.sign(relative_pos)
|
576 |
+
mid = bucket_size // 2
|
577 |
+
abs_pos = torch.where(
|
578 |
+
(relative_pos < mid) & (relative_pos > -mid),
|
579 |
+
mid - 1,
|
580 |
+
torch.abs(relative_pos).clamp(max=max_position - 1),
|
581 |
+
)
|
582 |
+
log_pos = (
|
583 |
+
torch.ceil(
|
584 |
+
torch.log(abs_pos / mid)
|
585 |
+
/ math.log((max_position - 1) / mid)
|
586 |
+
* (mid - 1)
|
587 |
+
).int()
|
588 |
+
+ mid
|
589 |
+
)
|
590 |
+
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
|
591 |
+
return bucket_pos
|
592 |
+
|
593 |
+
def initialize(self):
|
594 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
595 |
+
nn.init.trunc_normal_(
|
596 |
+
self.in_proj_qk.weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
597 |
+
)
|
598 |
+
nn.init.trunc_normal_(
|
599 |
+
self.in_proj_v.weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
600 |
+
)
|
601 |
+
nn.init.trunc_normal_(
|
602 |
+
self.out_proj.weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
603 |
+
)
|
604 |
+
self.in_proj_qk.bias.data.zero_()
|
605 |
+
self.in_proj_v.bias.data.zero_()
|
606 |
+
self.out_proj.bias.data.zero_()
|
607 |
+
|
608 |
+
def compute_attention_scores(self, hidden_states, relative_embedding):
|
609 |
+
key_len, batch_size, _ = hidden_states.size()
|
610 |
+
query_len = key_len
|
611 |
+
|
612 |
+
if self.position_indices.size(0) < query_len:
|
613 |
+
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(
|
614 |
+
1
|
615 |
+
) - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
|
616 |
+
position_indices = self.make_log_bucket_position(
|
617 |
+
position_indices, self.position_bucket_size, 512
|
618 |
+
)
|
619 |
+
position_indices = self.position_bucket_size - 1 + position_indices
|
620 |
+
self.position_indices = position_indices.to(hidden_states.device)
|
621 |
+
|
622 |
+
hidden_states = self.pre_layer_norm(hidden_states)
|
623 |
+
|
624 |
+
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
|
625 |
+
value = self.in_proj_v(hidden_states) # shape: [T, B, D]
|
626 |
+
|
627 |
+
query = query.reshape(
|
628 |
+
query_len, batch_size * self.num_heads, self.head_size
|
629 |
+
).transpose(0, 1)
|
630 |
+
key = key.reshape(
|
631 |
+
key_len, batch_size * self.num_heads, self.head_size
|
632 |
+
).transpose(0, 1)
|
633 |
+
value = value.view(
|
634 |
+
key_len, batch_size * self.num_heads, self.head_size
|
635 |
+
).transpose(0, 1)
|
636 |
+
|
637 |
+
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
|
638 |
+
|
639 |
+
query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(
|
640 |
+
2, dim=-1
|
641 |
+
) # shape: [2T-1, D]
|
642 |
+
query_pos = query_pos.view(
|
643 |
+
-1, self.num_heads, self.head_size
|
644 |
+
) # shape: [2T-1, H, D]
|
645 |
+
key_pos = key_pos.view(
|
646 |
+
-1, self.num_heads, self.head_size
|
647 |
+
) # shape: [2T-1, H, D]
|
648 |
+
|
649 |
+
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
|
650 |
+
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
|
651 |
+
|
652 |
+
attention_c_p = torch.einsum(
|
653 |
+
"bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale
|
654 |
+
)
|
655 |
+
attention_p_c = torch.einsum(
|
656 |
+
"bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1)
|
657 |
+
)
|
658 |
+
|
659 |
+
position_indices = self.position_indices[:query_len, :key_len].expand(
|
660 |
+
batch_size, self.num_heads, -1, -1
|
661 |
+
)
|
662 |
+
attention_c_p = attention_c_p.gather(3, position_indices)
|
663 |
+
attention_p_c = attention_p_c.gather(2, position_indices)
|
664 |
+
|
665 |
+
attention_scores = attention_scores.view(
|
666 |
+
batch_size, self.num_heads, query_len, key_len
|
667 |
+
)
|
668 |
+
attention_scores.add_(attention_c_p)
|
669 |
+
attention_scores.add_(attention_p_c)
|
670 |
+
|
671 |
+
return attention_scores, value
|
672 |
+
|
673 |
+
def compute_output(self, attention_probs, value):
|
674 |
+
attention_probs = self.dropout(attention_probs)
|
675 |
+
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
|
676 |
+
context = context.transpose(0, 1).reshape(
|
677 |
+
context.size(1), -1, self.hidden_size
|
678 |
+
) # shape: [Q, B, H*D]
|
679 |
+
context = self.out_proj(context)
|
680 |
+
context = self.post_layer_norm(context)
|
681 |
+
context = self.dropout(context)
|
682 |
+
return context
|
683 |
+
|
684 |
+
def forward(self, hidden_states, attention_mask, relative_embedding):
|
685 |
+
attention_scores, value = self.compute_attention_scores(
|
686 |
+
hidden_states, relative_embedding
|
687 |
+
)
|
688 |
+
attention_probs = torch.sigmoid(attention_scores) * attention_mask
|
689 |
+
return self.compute_output(attention_probs, value), attention_probs.detach()
|
690 |
+
|
691 |
+
|
692 |
+
class Embedding(nn.Module):
|
693 |
+
def __init__(self, config):
|
694 |
+
super().__init__()
|
695 |
+
self.hidden_size = config.hidden_size
|
696 |
+
|
697 |
+
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
698 |
+
self.word_layer_norm = nn.LayerNorm(
|
699 |
+
config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False
|
700 |
+
)
|
701 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
702 |
+
|
703 |
+
self.relative_embedding = nn.Parameter(
|
704 |
+
torch.empty(2 * config.position_bucket_size - 1, config.hidden_size)
|
705 |
+
)
|
706 |
+
self.relative_layer_norm = nn.LayerNorm(
|
707 |
+
config.hidden_size, eps=config.layer_norm_eps
|
708 |
+
)
|
709 |
+
|
710 |
+
self.initialize()
|
711 |
+
|
712 |
+
def initialize(self):
|
713 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
714 |
+
nn.init.trunc_normal_(
|
715 |
+
self.relative_embedding, mean=0.0, std=std, a=-2 * std, b=2 * std
|
716 |
+
)
|
717 |
+
nn.init.trunc_normal_(
|
718 |
+
self.word_embedding.weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
719 |
+
)
|
720 |
+
|
721 |
+
def forward(self, input_ids):
|
722 |
+
word_embedding = self.dropout(
|
723 |
+
self.word_layer_norm(self.word_embedding(input_ids))
|
724 |
+
)
|
725 |
+
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
|
726 |
+
return word_embedding, relative_embeddings
|
727 |
+
|
728 |
+
|
729 |
+
#
|
730 |
+
# HuggingFace wrappers
|
731 |
+
#
|
732 |
+
|
733 |
+
|
734 |
+
class LtgBertPreTrainedModel(PreTrainedModel):
|
735 |
+
"""
|
736 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
737 |
+
models.
|
738 |
+
"""
|
739 |
+
|
740 |
+
config_class = LtgBertConfig
|
741 |
+
base_model_prefix = "bnc-bert"
|
742 |
+
supports_gradient_checkpointing = True
|
743 |
+
|
744 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
745 |
+
if isinstance(module, Encoder):
|
746 |
+
module.activation_checkpointing = value
|
747 |
+
|
748 |
+
def _init_weights(self, _):
|
749 |
+
pass # everything is already initialized
|
750 |
+
|
751 |
+
|
752 |
+
LTG_BERT_START_DOCSTRING = r"""
|
753 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
754 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
755 |
+
etc.)
|
756 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
757 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
758 |
+
and behavior.
|
759 |
+
Parameters:
|
760 |
+
config ([`LtgBertConfig`]): Model configuration class with all the parameters of the model.
|
761 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
762 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
763 |
+
"""
|
764 |
+
|
765 |
+
LTG_BERT_INPUTS_DOCSTRING = r"""
|
766 |
+
Args:
|
767 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
768 |
+
Indices of input sequence tokens in the vocabulary.
|
769 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
770 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
771 |
+
[What are input IDs?](../glossary#input-ids)
|
772 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
773 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
774 |
+
- 1 for tokens that are **not masked**,
|
775 |
+
- 0 for tokens that are **masked**.
|
776 |
+
[What are attention masks?](../glossary#attention-mask)
|
777 |
+
output_hidden_states (`bool`, *optional*):
|
778 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
779 |
+
more detail.
|
780 |
+
output_attentions (`bool`, *optional*):
|
781 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
782 |
+
tensors for more detail.
|
783 |
+
return_dict (`bool`, *optional*):
|
784 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
785 |
+
"""
|
786 |
+
|
787 |
+
|
788 |
+
@add_start_docstrings(
|
789 |
+
"The bare LTG-BERT transformer outputting raw hidden-states without any specific head on top.",
|
790 |
+
LTG_BERT_START_DOCSTRING,
|
791 |
+
)
|
792 |
+
class LtgBertModel(LtgBertPreTrainedModel):
|
793 |
+
def __init__(self, config, add_mlm_layer=False):
|
794 |
+
super().__init__(config)
|
795 |
+
self.config = config
|
796 |
+
|
797 |
+
self.embedding = Embedding(config)
|
798 |
+
self.parser_network = ParserNetwork(config, pad=config.pad_token_id)
|
799 |
+
self.transformer = Encoder(config, activation_checkpointing=False)
|
800 |
+
self.classifier = (
|
801 |
+
MaskClassifier(config, self.embedding.word_embedding.weight)
|
802 |
+
if add_mlm_layer
|
803 |
+
else None
|
804 |
+
)
|
805 |
+
|
806 |
+
def get_input_embeddings(self):
|
807 |
+
return self.embedding.word_embedding
|
808 |
+
|
809 |
+
def set_input_embeddings(self, value):
|
810 |
+
self.embedding.word_embedding = value
|
811 |
+
|
812 |
+
def get_contextualized_embeddings(
|
813 |
+
self,
|
814 |
+
input_ids: Optional[torch.Tensor] = None,
|
815 |
+
attention_mask: Optional[torch.Tensor] = None,
|
816 |
+
) -> List[torch.Tensor]:
|
817 |
+
if input_ids is not None:
|
818 |
+
input_shape = input_ids.size()
|
819 |
+
else:
|
820 |
+
raise ValueError("You have to specify input_ids")
|
821 |
+
|
822 |
+
batch_size, seq_length = input_shape
|
823 |
+
device = input_ids.device
|
824 |
+
|
825 |
+
static_embeddings, relative_embedding = self.embedding(input_ids.t())
|
826 |
+
att_mask, cibling, head, block = self.parser_network(
|
827 |
+
input_ids.t(), static_embeddings
|
828 |
+
)
|
829 |
+
contextualized_embeddings, attention_probs = self.transformer(
|
830 |
+
static_embeddings, att_mask, relative_embedding
|
831 |
+
)
|
832 |
+
contextualized_embeddings = [
|
833 |
+
e.transpose(0, 1) for e in contextualized_embeddings
|
834 |
+
]
|
835 |
+
last_layer = contextualized_embeddings[-1]
|
836 |
+
contextualized_embeddings = [contextualized_embeddings[0]] + [
|
837 |
+
contextualized_embeddings[i] - contextualized_embeddings[i - 1]
|
838 |
+
for i in range(1, len(contextualized_embeddings))
|
839 |
+
]
|
840 |
+
return last_layer, contextualized_embeddings, attention_probs
|
841 |
+
|
842 |
+
@add_start_docstrings_to_model_forward(
|
843 |
+
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
844 |
+
)
|
845 |
+
def forward(
|
846 |
+
self,
|
847 |
+
input_ids: Optional[torch.Tensor] = None,
|
848 |
+
attention_mask: Optional[torch.Tensor] = None,
|
849 |
+
output_hidden_states: Optional[bool] = None,
|
850 |
+
output_attentions: Optional[bool] = None,
|
851 |
+
return_dict: Optional[bool] = None,
|
852 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
853 |
+
output_attentions = (
|
854 |
+
output_attentions
|
855 |
+
if output_attentions is not None
|
856 |
+
else self.config.output_attentions
|
857 |
+
)
|
858 |
+
output_hidden_states = (
|
859 |
+
output_hidden_states
|
860 |
+
if output_hidden_states is not None
|
861 |
+
else self.config.output_hidden_states
|
862 |
+
)
|
863 |
+
return_dict = (
|
864 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
865 |
+
)
|
866 |
+
|
867 |
+
(
|
868 |
+
sequence_output,
|
869 |
+
contextualized_embeddings,
|
870 |
+
attention_probs,
|
871 |
+
) = self.get_contextualized_embeddings(input_ids, attention_mask)
|
872 |
+
|
873 |
+
if not return_dict:
|
874 |
+
return (
|
875 |
+
sequence_output,
|
876 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
877 |
+
*([attention_probs] if output_attentions else []),
|
878 |
+
)
|
879 |
+
|
880 |
+
return BaseModelOutput(
|
881 |
+
last_hidden_state=sequence_output,
|
882 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
883 |
+
attentions=attention_probs if output_attentions else None,
|
884 |
+
)
|
885 |
+
|
886 |
+
|
887 |
+
@add_start_docstrings(
|
888 |
+
"""LTG-BERT model with a `language modeling` head on top.""",
|
889 |
+
LTG_BERT_START_DOCSTRING,
|
890 |
+
)
|
891 |
+
class LtgBertForMaskedLM(LtgBertModel):
|
892 |
+
_keys_to_ignore_on_load_unexpected = ["head"]
|
893 |
+
|
894 |
+
def __init__(self, config):
|
895 |
+
super().__init__(config, add_mlm_layer=True)
|
896 |
+
|
897 |
+
def get_output_embeddings(self):
|
898 |
+
return self.classifier.nonlinearity[-1].weight
|
899 |
+
|
900 |
+
def set_output_embeddings(self, new_embeddings):
|
901 |
+
self.classifier.nonlinearity[-1].weight = new_embeddings
|
902 |
+
|
903 |
+
@add_start_docstrings_to_model_forward(
|
904 |
+
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
905 |
+
)
|
906 |
+
def forward(
|
907 |
+
self,
|
908 |
+
input_ids: Optional[torch.Tensor] = None,
|
909 |
+
attention_mask: Optional[torch.Tensor] = None,
|
910 |
+
output_hidden_states: Optional[bool] = None,
|
911 |
+
output_attentions: Optional[bool] = None,
|
912 |
+
return_dict: Optional[bool] = None,
|
913 |
+
labels: Optional[torch.LongTensor] = None,
|
914 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
915 |
+
r"""
|
916 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
917 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
918 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
919 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
920 |
+
"""
|
921 |
+
return_dict = (
|
922 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
923 |
+
)
|
924 |
+
|
925 |
+
(
|
926 |
+
sequence_output,
|
927 |
+
contextualized_embeddings,
|
928 |
+
attention_probs,
|
929 |
+
) = self.get_contextualized_embeddings(input_ids, attention_mask)
|
930 |
+
subword_prediction = self.classifier(sequence_output)
|
931 |
+
|
932 |
+
masked_lm_loss = None
|
933 |
+
if labels is not None:
|
934 |
+
masked_lm_loss = F.cross_entropy(
|
935 |
+
subword_prediction.flatten(0, 1), labels.flatten()
|
936 |
+
)
|
937 |
+
|
938 |
+
if not return_dict:
|
939 |
+
output = (
|
940 |
+
subword_prediction,
|
941 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
942 |
+
*([attention_probs] if output_attentions else []),
|
943 |
+
)
|
944 |
+
return (
|
945 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
946 |
+
)
|
947 |
+
|
948 |
+
return MaskedLMOutput(
|
949 |
+
loss=masked_lm_loss,
|
950 |
+
logits=subword_prediction,
|
951 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
952 |
+
attentions=attention_probs if output_attentions else None,
|
953 |
+
)
|
954 |
+
|
955 |
+
|
956 |
+
class Classifier(nn.Module):
|
957 |
+
def __init__(self, config, num_labels: int):
|
958 |
+
super().__init__()
|
959 |
+
|
960 |
+
drop_out = getattr(config, "classifier_dropout", config.hidden_dropout_prob)
|
961 |
+
|
962 |
+
self.nonlinearity = nn.Sequential(
|
963 |
+
nn.LayerNorm(
|
964 |
+
config.hidden_size, config.layer_norm_eps, elementwise_affine=False
|
965 |
+
),
|
966 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
967 |
+
nn.GELU(),
|
968 |
+
nn.LayerNorm(
|
969 |
+
config.hidden_size, config.layer_norm_eps, elementwise_affine=False
|
970 |
+
),
|
971 |
+
nn.Dropout(drop_out),
|
972 |
+
nn.Linear(config.hidden_size, num_labels),
|
973 |
+
)
|
974 |
+
self.initialize(config.hidden_size)
|
975 |
+
|
976 |
+
def initialize(self, hidden_size):
|
977 |
+
std = math.sqrt(2.0 / (5.0 * hidden_size))
|
978 |
+
nn.init.trunc_normal_(
|
979 |
+
self.nonlinearity[1].weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
980 |
+
)
|
981 |
+
nn.init.trunc_normal_(
|
982 |
+
self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2 * std, b=2 * std
|
983 |
+
)
|
984 |
+
self.nonlinearity[1].bias.data.zero_()
|
985 |
+
self.nonlinearity[-1].bias.data.zero_()
|
986 |
+
|
987 |
+
def forward(self, x):
|
988 |
+
x = self.nonlinearity(x)
|
989 |
+
return x
|
990 |
+
|
991 |
+
|
992 |
+
@add_start_docstrings(
|
993 |
+
"""
|
994 |
+
LTG-BERT model with a sequence classification/regression head on top (a linear layer on top of the pooled
|
995 |
+
output) e.g. for GLUE tasks.
|
996 |
+
""",
|
997 |
+
LTG_BERT_START_DOCSTRING,
|
998 |
+
)
|
999 |
+
class LtgBertForSequenceClassification(LtgBertModel):
|
1000 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
1001 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
1002 |
+
|
1003 |
+
def __init__(self, config):
|
1004 |
+
super().__init__(config, add_mlm_layer=False)
|
1005 |
+
|
1006 |
+
self.num_labels = config.num_labels
|
1007 |
+
self.head = Classifier(config, self.num_labels)
|
1008 |
+
|
1009 |
+
@add_start_docstrings_to_model_forward(
|
1010 |
+
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1011 |
+
)
|
1012 |
+
def forward(
|
1013 |
+
self,
|
1014 |
+
input_ids: Optional[torch.Tensor] = None,
|
1015 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1016 |
+
output_attentions: Optional[bool] = None,
|
1017 |
+
output_hidden_states: Optional[bool] = None,
|
1018 |
+
return_dict: Optional[bool] = None,
|
1019 |
+
labels: Optional[torch.LongTensor] = None,
|
1020 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1021 |
+
r"""
|
1022 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1023 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1024 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1025 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1026 |
+
"""
|
1027 |
+
return_dict = (
|
1028 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
(
|
1032 |
+
sequence_output,
|
1033 |
+
contextualized_embeddings,
|
1034 |
+
attention_probs,
|
1035 |
+
) = self.get_contextualized_embeddings(input_ids, attention_mask)
|
1036 |
+
logits = self.head(sequence_output[:, 0, :])
|
1037 |
+
|
1038 |
+
loss = None
|
1039 |
+
if labels is not None:
|
1040 |
+
if self.config.problem_type is None:
|
1041 |
+
if self.num_labels == 1:
|
1042 |
+
self.config.problem_type = "regression"
|
1043 |
+
elif self.num_labels > 1 and (
|
1044 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1045 |
+
):
|
1046 |
+
self.config.problem_type = "single_label_classification"
|
1047 |
+
else:
|
1048 |
+
self.config.problem_type = "multi_label_classification"
|
1049 |
+
|
1050 |
+
if self.config.problem_type == "regression":
|
1051 |
+
loss_fct = nn.MSELoss()
|
1052 |
+
if self.num_labels == 1:
|
1053 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1054 |
+
else:
|
1055 |
+
loss = loss_fct(logits, labels)
|
1056 |
+
elif self.config.problem_type == "single_label_classification":
|
1057 |
+
loss_fct = nn.CrossEntropyLoss()
|
1058 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1059 |
+
elif self.config.problem_type == "multi_label_classification":
|
1060 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1061 |
+
loss = loss_fct(logits, labels)
|
1062 |
+
|
1063 |
+
if not return_dict:
|
1064 |
+
output = (
|
1065 |
+
logits,
|
1066 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
1067 |
+
*([attention_probs] if output_attentions else []),
|
1068 |
+
)
|
1069 |
+
return ((loss,) + output) if loss is not None else output
|
1070 |
+
|
1071 |
+
return SequenceClassifierOutput(
|
1072 |
+
loss=loss,
|
1073 |
+
logits=logits,
|
1074 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
1075 |
+
attentions=attention_probs if output_attentions else None,
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
|
1079 |
+
@add_start_docstrings(
|
1080 |
+
"""
|
1081 |
+
LTG-BERT model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1082 |
+
Named-Entity-Recognition (NER) tasks.
|
1083 |
+
""",
|
1084 |
+
LTG_BERT_START_DOCSTRING,
|
1085 |
+
)
|
1086 |
+
class LtgBertForTokenClassification(LtgBertModel):
|
1087 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
1088 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
1089 |
+
|
1090 |
+
def __init__(self, config):
|
1091 |
+
super().__init__(config, add_mlm_layer=False)
|
1092 |
+
|
1093 |
+
self.num_labels = config.num_labels
|
1094 |
+
self.head = Classifier(config, self.num_labels)
|
1095 |
+
|
1096 |
+
@add_start_docstrings_to_model_forward(
|
1097 |
+
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1098 |
+
)
|
1099 |
+
def forward(
|
1100 |
+
self,
|
1101 |
+
input_ids: Optional[torch.Tensor] = None,
|
1102 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1103 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1104 |
+
position_ids: Optional[torch.Tensor] = None,
|
1105 |
+
output_attentions: Optional[bool] = None,
|
1106 |
+
output_hidden_states: Optional[bool] = None,
|
1107 |
+
return_dict: Optional[bool] = None,
|
1108 |
+
labels: Optional[torch.LongTensor] = None,
|
1109 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1110 |
+
return_dict = (
|
1111 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
(
|
1115 |
+
sequence_output,
|
1116 |
+
contextualized_embeddings,
|
1117 |
+
attention_probs,
|
1118 |
+
) = self.get_contextualized_embeddings(input_ids, attention_mask)
|
1119 |
+
logits = self.head(sequence_output)
|
1120 |
+
|
1121 |
+
loss = None
|
1122 |
+
if labels is not None:
|
1123 |
+
loss_fct = nn.CrossEntropyLoss()
|
1124 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1125 |
+
|
1126 |
+
if not return_dict:
|
1127 |
+
output = (
|
1128 |
+
logits,
|
1129 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
1130 |
+
*([attention_probs] if output_attentions else []),
|
1131 |
+
)
|
1132 |
+
return ((loss,) + output) if loss is not None else output
|
1133 |
+
|
1134 |
+
return TokenClassifierOutput(
|
1135 |
+
loss=loss,
|
1136 |
+
logits=logits,
|
1137 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
1138 |
+
attentions=attention_probs if output_attentions else None,
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
|
1142 |
+
@add_start_docstrings(
|
1143 |
+
"""
|
1144 |
+
LTG-BERT model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1145 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1146 |
+
""",
|
1147 |
+
LTG_BERT_START_DOCSTRING,
|
1148 |
+
)
|
1149 |
+
class LtgBertForQuestionAnswering(LtgBertModel):
|
1150 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
1151 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
1152 |
+
|
1153 |
+
def __init__(self, config):
|
1154 |
+
super().__init__(config, add_mlm_layer=False)
|
1155 |
+
|
1156 |
+
self.num_labels = config.num_labels
|
1157 |
+
self.head = Classifier(config, self.num_labels)
|
1158 |
+
|
1159 |
+
@add_start_docstrings_to_model_forward(
|
1160 |
+
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1161 |
+
)
|
1162 |
+
def forward(
|
1163 |
+
self,
|
1164 |
+
input_ids: Optional[torch.Tensor] = None,
|
1165 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1166 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1167 |
+
position_ids: Optional[torch.Tensor] = None,
|
1168 |
+
output_attentions: Optional[bool] = None,
|
1169 |
+
output_hidden_states: Optional[bool] = None,
|
1170 |
+
return_dict: Optional[bool] = None,
|
1171 |
+
start_positions: Optional[torch.Tensor] = None,
|
1172 |
+
end_positions: Optional[torch.Tensor] = None,
|
1173 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1174 |
+
return_dict = (
|
1175 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
(
|
1179 |
+
sequence_output,
|
1180 |
+
contextualized_embeddings,
|
1181 |
+
attention_probs,
|
1182 |
+
) = self.get_contextualized_embeddings(input_ids, attention_mask)
|
1183 |
+
logits = self.head(sequence_output)
|
1184 |
+
|
1185 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1186 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1187 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1188 |
+
|
1189 |
+
total_loss = None
|
1190 |
+
if start_positions is not None and end_positions is not None:
|
1191 |
+
# If we are on multi-GPU, split add a dimension
|
1192 |
+
if len(start_positions.size()) > 1:
|
1193 |
+
start_positions = start_positions.squeeze(-1)
|
1194 |
+
if len(end_positions.size()) > 1:
|
1195 |
+
end_positions = end_positions.squeeze(-1)
|
1196 |
+
|
1197 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1198 |
+
ignored_index = start_logits.size(1)
|
1199 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1200 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1201 |
+
|
1202 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
1203 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1204 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1205 |
+
total_loss = (start_loss + end_loss) / 2
|
1206 |
+
|
1207 |
+
if not return_dict:
|
1208 |
+
output = (
|
1209 |
+
start_logits,
|
1210 |
+
end_logits,
|
1211 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
1212 |
+
*([attention_probs] if output_attentions else []),
|
1213 |
+
)
|
1214 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1215 |
+
|
1216 |
+
return QuestionAnsweringModelOutput(
|
1217 |
+
loss=total_loss,
|
1218 |
+
start_logits=start_logits,
|
1219 |
+
end_logits=end_logits,
|
1220 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
1221 |
+
attentions=attention_probs if output_attentions else None,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
|
1225 |
+
@add_start_docstrings(
|
1226 |
+
"""
|
1227 |
+
LTG-BERT model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1228 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1229 |
+
""",
|
1230 |
+
LTG_BERT_START_DOCSTRING,
|
1231 |
+
)
|
1232 |
+
class LtgBertForMultipleChoice(LtgBertModel):
|
1233 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
1234 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
1235 |
+
|
1236 |
+
def __init__(self, config):
|
1237 |
+
super().__init__(config, add_mlm_layer=False)
|
1238 |
+
|
1239 |
+
self.num_labels = getattr(config, "num_labels", 2)
|
1240 |
+
self.head = Classifier(config, self.num_labels)
|
1241 |
+
|
1242 |
+
@add_start_docstrings_to_model_forward(
|
1243 |
+
LTG_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1244 |
+
)
|
1245 |
+
def forward(
|
1246 |
+
self,
|
1247 |
+
input_ids: Optional[torch.Tensor] = None,
|
1248 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1249 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1250 |
+
position_ids: Optional[torch.Tensor] = None,
|
1251 |
+
labels: Optional[torch.Tensor] = None,
|
1252 |
+
output_attentions: Optional[bool] = None,
|
1253 |
+
output_hidden_states: Optional[bool] = None,
|
1254 |
+
return_dict: Optional[bool] = None,
|
1255 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1256 |
+
return_dict = (
|
1257 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1258 |
+
)
|
1259 |
+
num_choices = input_ids.shape[1]
|
1260 |
+
|
1261 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
1262 |
+
flat_attention_mask = (
|
1263 |
+
attention_mask.view(-1, attention_mask.size(-1))
|
1264 |
+
if attention_mask is not None
|
1265 |
+
else None
|
1266 |
+
)
|
1267 |
+
|
1268 |
+
(
|
1269 |
+
sequence_output,
|
1270 |
+
contextualized_embeddings,
|
1271 |
+
attention_probs,
|
1272 |
+
) = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
|
1273 |
+
logits = self.head(sequence_output)
|
1274 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1275 |
+
|
1276 |
+
loss = None
|
1277 |
+
if labels is not None:
|
1278 |
+
loss_fct = nn.CrossEntropyLoss()
|
1279 |
+
loss = loss_fct(reshaped_logits, labels)
|
1280 |
+
|
1281 |
+
if not return_dict:
|
1282 |
+
output = (
|
1283 |
+
reshaped_logits,
|
1284 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
1285 |
+
*([attention_probs] if output_attentions else []),
|
1286 |
+
)
|
1287 |
+
return ((loss,) + output) if loss is not None else output
|
1288 |
+
|
1289 |
+
return MultipleChoiceModelOutput(
|
1290 |
+
loss=loss,
|
1291 |
+
logits=reshaped_logits,
|
1292 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
1293 |
+
attentions=attention_probs if output_attentions else None,
|
1294 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b7628dc36c1c996847b8ac8e32cd959e09cfab55511e6dd935b904f2374f0b0
|
3 |
+
size 159209798
|
results.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Results
|
2 |
+
|
3 |
+
The results here are taken from running `score_predictions.py` from the [babylm evaluation pipeline](https://github.com/babylm/evaluation-pipeline-2024) on the `ELC_ParserBERT_10M_textonly_predictions.json.gz` file in this directory, which contains the predictions for the different evaluation tasks.
|
4 |
+
|
5 |
+
## Overall Results
|
6 |
+
|
7 |
+
Here are the average results per section and the macroscore, compared with the baseline models:
|
8 |
+
|
9 |
+
| Model | BLiMP | BLiMP Supplement | EWoK | GLUE | *Macroaverage* |
|
10 |
+
| --- | --- | --- | --- | --- | --- |
|
11 |
+
| BabyLlama | 69.8 | 59.5 | 50.7 | 63.3 | 60.8 |
|
12 |
+
| LTG-BERT | 60.6 | 60.8 | 48.9 | 60.3 | 57.7 |
|
13 |
+
| ELC-ParserBERT | 59.6 | 57.7 | 63.1 | 44.5 | 56.2 |
|
14 |
+
|
15 |
+
## The Breakdown Per Section
|
16 |
+
|
17 |
+
|glue subtask | Score |
|
18 |
+
|-------------- | ------- |
|
19 |
+
|cola (MCC) | 0.042 |
|
20 |
+
|sst2 | 0.502 |
|
21 |
+
|mrpc (F1) | 0.82 |
|
22 |
+
|qqp (F1) | 0 |
|
23 |
+
|mnli | 0.357 |
|
24 |
+
|mnli-mm | 0.355 |
|
25 |
+
|qnli | 0.491 |
|
26 |
+
|rte | 0.496 |
|
27 |
+
|boolq | 0.585 |
|
28 |
+
|multirc | 0.63 |
|
29 |
+
|wsc | 0.615 |
|
30 |
+
|*Average* | 0.445 |
|
31 |
+
|
32 |
+
| blimp subtask | Score |
|
33 |
+
| --------------------------------------------------- | ------- |
|
34 |
+
| adjunct_island | 0.712 |
|
35 |
+
| anaphor_gender_agreement | 0.593 |
|
36 |
+
| anaphor_number_agreement | 0.647 |
|
37 |
+
| animate_subject_passive | 0.594 |
|
38 |
+
| animate_subject_trans | 0.47 |
|
39 |
+
| causative | 0.726 |
|
40 |
+
| complex_NP_island | 0.447 |
|
41 |
+
| coordinate_structure_constraint_complex_left_branch | 0.39 |
|
42 |
+
| coordinate_structure_constraint_object_extraction | 0.806 |
|
43 |
+
| determiner_noun_agreement_1 | 0.793 |
|
44 |
+
| determiner_noun_agreement_2 | 0.936 |
|
45 |
+
| determiner_noun_agreement_irregular_1 | 0.467 |
|
46 |
+
| determiner_noun_agreement_irregular_2 | 0.394 |
|
47 |
+
| determiner_noun_agreement_with_adj_2 | 0.889 |
|
48 |
+
| determiner_noun_agreement_with_adj_irregular_1 | 0.834 |
|
49 |
+
| determiner_noun_agreement_with_adj_irregular_2 | 0.848 |
|
50 |
+
| determiner_noun_agreement_with_adjective_1 | 0.758 |
|
51 |
+
| distractor_agreement_relational_noun | 0.212 |
|
52 |
+
| distractor_agreement_relative_clause | 0.282 |
|
53 |
+
| drop_argument | 0.485 |
|
54 |
+
| ellipsis_n_bar_1 | 0.505 |
|
55 |
+
| ellipsis_n_bar_2 | 0.342 |
|
56 |
+
| existential_there_object_raising | 0.447 |
|
57 |
+
| existential_there_quantifiers_1 | 0.385 |
|
58 |
+
| existential_there_quantifiers_2 | 0.396 |
|
59 |
+
| existential_there_subject_raising | 0.476 |
|
60 |
+
| expletive_it_object_raising | 0.44 |
|
61 |
+
| inchoative | 0.527 |
|
62 |
+
| intransitive | 0.484 |
|
63 |
+
| irregular_past_participle_adjectives | 0.348 |
|
64 |
+
| irregular_past_participle_verbs | 0.594 |
|
65 |
+
| irregular_plural_subject_verb_agreement_1 | 0.634 |
|
66 |
+
| irregular_plural_subject_verb_agreement_2 | 0.687 |
|
67 |
+
| left_branch_island_echo_question | 0.634 |
|
68 |
+
| left_branch_island_simple_question | 0.615 |
|
69 |
+
| matrix_question_npi_licensor_present | 0.206 |
|
70 |
+
| npi_present_1 | 0.362 |
|
71 |
+
| npi_present_2 | 0.347 |
|
72 |
+
| only_npi_licensor_present | 0.964 |
|
73 |
+
| only_npi_scope | 0.89 |
|
74 |
+
| passive_1 | 0.514 |
|
75 |
+
| passive_2 | 0.482 |
|
76 |
+
| principle_A_c_command | 0.635 |
|
77 |
+
| principle_A_case_1 | 0.999 |
|
78 |
+
| principle_A_case_2 | 0.78 |
|
79 |
+
| principle_A_domain_1 | 0.893 |
|
80 |
+
| principle_A_domain_2 | 0.623 |
|
81 |
+
| principle_A_domain_3 | 0.556 |
|
82 |
+
| principle_A_reconstruction | 0.339 |
|
83 |
+
| regular_plural_subject_verb_agreement_1 | 0.628 |
|
84 |
+
| regular_plural_subject_verb_agreement_2 | 0.663 |
|
85 |
+
| sentential_negation_npi_licensor_present | 0.93 |
|
86 |
+
| sentential_negation_npi_scope | 0.722 |
|
87 |
+
| sentential_subject_island | 0.361 |
|
88 |
+
| superlative_quantifiers_1 | 0.702 |
|
89 |
+
| superlative_quantifiers_2 | 0.498 |
|
90 |
+
| tough_vs_raising_1 | 0.351 |
|
91 |
+
| tough_vs_raising_2 | 0.648 |
|
92 |
+
| transitive | 0.645 |
|
93 |
+
| wh_island | 0.719 |
|
94 |
+
| wh_questions_object_gap | 0.657 |
|
95 |
+
| wh_questions_subject_gap | 0.861 |
|
96 |
+
| wh_questions_subject_gap_long_distance | 0.937 |
|
97 |
+
| wh_vs_that_no_gap | 0.969 |
|
98 |
+
| wh_vs_that_no_gap_long_distance | 0.969 |
|
99 |
+
| wh_vs_that_with_gap | 0.222 |
|
100 |
+
| wh_vs_that_with_gap_long_distance | 0.063 |
|
101 |
+
| *Average* | 0.596 |
|
102 |
+
|
103 |
+
| blimp_supplement subtask | Score |
|
104 |
+
| -------------------------- | ------- |
|
105 |
+
| hypernym | 0.531 |
|
106 |
+
| qa_congruence_easy | 0.641 |
|
107 |
+
| qa_congruence_tricky | 0.521 |
|
108 |
+
| subject_aux_inversion | 0.614 |
|
109 |
+
| turn_taking | 0.579 |
|
110 |
+
| *Average* | 0.577 |
|
111 |
+
|
112 |
+
| ewok subtask | Score |
|
113 |
+
| ----------------------- | ------- |
|
114 |
+
| agent-properties | 0.738 |
|
115 |
+
| material-dynamics | 0.81 |
|
116 |
+
| material-properties | 0.6 |
|
117 |
+
| physical-dynamics | 0.383 |
|
118 |
+
| physical-interactions | 0.599 |
|
119 |
+
| physical-relations | 0.817 |
|
120 |
+
| quantitative-properties | 0.427 |
|
121 |
+
| social-interactions | 0.565 |
|
122 |
+
| social-properties | 0.561 |
|
123 |
+
| social-relations | 0.807 |
|
124 |
+
| spatial-relations | 0.635 |
|
125 |
+
| *Average* | 0.631 |
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_max_length": 1000000000000000019884624838656,
|
3 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
4 |
+
}
|