Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

ResNet-50 v1.5

ResNet model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper Deep Residual Learning for Image Recognition by He et al.

Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team.

Model description

ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models.

This is ResNet v1.5, which differs from the original model: in the bottleneck blocks which require downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. This difference makes ResNet50 v1.5 slightly more accurate (~0.5% top1) than v1, but comes with a small performance drawback (~5% imgs/sec) according to Nvidia.

model image

Intended uses & limitations

You can use the raw model for image classification. See the model hub to look for fine-tuned versions on a task that interests you.

How to use

Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:

from transformers import AutoImageProcessor, ResNetForImageClassification
import torch
from datasets import load_dataset

dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]

processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")

inputs = processor(image, return_tensors="pt")

with torch.no_grad():
    logits = model(**inputs).logits

# model predicts one of the 1000 ImageNet classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])

For more code examples, we refer to the documentation.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train Rucy/resnet-50