File size: 2,601 Bytes
5690632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: llama2
base_model: Phind/Phind-CodeLlama-34B-v2
tags:
- generated_from_trainer
model-index:
- name: qlora-out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# qlora-out

This model is a fine-tuned version of [Phind/Phind-CodeLlama-34B-v2](https://huggingface.co/Phind/Phind-CodeLlama-34B-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 3
- total_train_batch_size: 18
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2069        | 0.1   | 20   | nan             |
| 0.0986        | 0.21  | 40   | nan             |
| 0.1101        | 0.31  | 60   | nan             |
| 0.072         | 0.41  | 80   | nan             |
| 0.1258        | 0.52  | 100  | nan             |
| 0.0675        | 0.62  | 120  | nan             |
| 0.0728        | 0.72  | 140  | nan             |
| 0.115         | 0.83  | 160  | nan             |
| 0.0769        | 0.93  | 180  | nan             |
| 0.0609        | 1.03  | 200  | nan             |
| 0.0881        | 1.14  | 220  | nan             |
| 0.0674        | 1.24  | 240  | nan             |
| 0.0476        | 1.34  | 260  | nan             |
| 0.0259        | 1.45  | 280  | nan             |
| 0.0534        | 1.55  | 300  | nan             |
| 0.0449        | 1.65  | 320  | nan             |
| 0.0325        | 1.76  | 340  | nan             |
| 0.03          | 1.86  | 360  | nan             |
| 0.0416        | 1.96  | 380  | nan             |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1