Slither Auditor

This model is a fine-tuned version of Phind/Phind-CodeLlama-34B-v2 on the Royal-lobster/Slither-Audited-Solidity-QA dataset.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 18
  • total_eval_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.2069 0.1 20 nan
0.0986 0.21 40 nan
0.1101 0.31 60 nan
0.072 0.41 80 nan
0.1258 0.52 100 nan
0.0675 0.62 120 nan
0.0728 0.72 140 nan
0.115 0.83 160 nan
0.0769 0.93 180 nan
0.0609 1.03 200 nan
0.0881 1.14 220 nan
0.0674 1.24 240 nan
0.0476 1.34 260 nan
0.0259 1.45 280 nan
0.0534 1.55 300 nan
0.0449 1.65 320 nan
0.0325 1.76 340 nan
0.03 1.86 360 nan
0.0416 1.96 380 nan

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Royal-lobster/Slither-LLM-Auditor-LoRA-Adapter

Quantized
(6)
this model