wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3997
  • Wer: 0.3538

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.92 100 3.6061 1.0
No log 1.83 200 3.0203 0.9999
No log 2.75 300 0.9479 0.7916
No log 3.67 400 0.6024 0.6285
3.1561 4.59 500 0.5112 0.5369
3.1561 5.5 600 0.4581 0.4900
3.1561 6.42 700 0.4321 0.4633
3.1561 7.34 800 0.4252 0.4400
3.1561 8.26 900 0.4204 0.4229
0.2247 9.17 1000 0.3948 0.3971
0.2247 10.09 1100 0.3997 0.3963
0.2247 11.01 1200 0.4157 0.3894
0.2247 11.93 1300 0.4142 0.3855
0.2247 12.84 1400 0.4108 0.3638
0.1022 13.76 1500 0.3929 0.3618
0.1022 14.68 1600 0.4004 0.3544

Framework versions

  • Transformers 4.28.1
  • Pytorch 1.12.1+cu102
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Robinjmf/wav2vec2-common_voice-tr-demo

Evaluation results