Improve model card and add metadata

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +39 -5
README.md CHANGED
@@ -1,18 +1,24 @@
1
  ---
 
 
2
  language: en
 
 
 
3
  tags:
4
  - vision
5
  - segmentation
6
- license: other
7
- datasets:
8
- - reasonseg
9
  ---
10
 
11
  # Seg-Zero-7B
12
 
13
- ## Desciption
 
 
14
 
15
- This is a Seg-Zero-7B model
 
 
16
 
17
  ## Usage
18
 
@@ -25,3 +31,31 @@ model = AutoModelForCausalLM.from_pretrained("Ricky06662/Seg-Zero-7B")
25
  tokenizer = AutoTokenizer.from_pretrained("Ricky06662/Seg-Zero-7B")
26
  ```
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - reasonseg
4
  language: en
5
+ license: other
6
+ pipeline_tag: image-segmentation
7
+ library_name: transformers
8
  tags:
9
  - vision
10
  - segmentation
 
 
 
11
  ---
12
 
13
  # Seg-Zero-7B
14
 
15
+ This model is based on the paper [Seg-Zero: Reasoning-Chain Guided Segmentation via Cognitive Reinforcement](https://huggingface.co/papers/2503.06520). It uses a decoupled architecture with a reasoning model and a segmentation model. It's trained via reinforcement learning using GRPO without explicit reasoning data, leading to robust zero-shot generalization and emergent test-time reasoning.
16
+
17
+ Code: https://github.com/dvlab-research/Seg-Zero
18
 
19
+ ## Description
20
+
21
+ This is a Seg-Zero-7B model. It introduces a decoupled architecture consisting of a reasoning model and a segmentation model. The reasoning model interprets user intentions, generates explicit reasoning chains, and produces positional prompts, which are subsequently used by the segmentation model to generate pixel-level masks.
22
 
23
  ## Usage
24
 
 
31
  tokenizer = AutoTokenizer.from_pretrained("Ricky06662/Seg-Zero-7B")
32
  ```
33
 
34
+ ## Installation
35
+
36
+ ```bash
37
+ git clone https://github.com/dvlab-research/Seg-Zero.git
38
+ cd Seg-Zero
39
+ conda create -n seg_zero python=3.11
40
+ conda activate seg_zero
41
+ pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1
42
+ pip install -e .
43
+ pip install sam2
44
+ pip install matplotlib
45
+ ```
46
+
47
+ ## Inference
48
+
49
+ ```bash
50
+ python inference_scripts/infer.py
51
+ ```
52
+
53
+ The default question is:
54
+
55
+ > "the unusual object in the image."
56
+
57
+ You will get the thinking process in the command line and the mask will be saved in the **inference_scripts** folder. You can also provide your own image_path and text:
58
+
59
+ ```bash
60
+ python inference_scripts/infer.py --image_path "your_image_path" --text "your question text"
61
+ ```