Quantization made by Richard Erkhov.
Mistral-7B-OpenOrca-sharded - GGUF
- Model creator: https://huggingface.co/yanismiraoui/
- Original model: https://huggingface.co/yanismiraoui/Mistral-7B-OpenOrca-sharded/
Original model description:
datasets: - Open-Orca/OpenOrca language: - en library_name: transformers pipeline_tag: text-generation license: apache-2.0
This repo contains a SHARDED version of: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
Huge thanks to the publishers for their amazing work, all credits go to them: https://huggingface.co/Open-Orca
๐ Mistral-7B-OpenOrca ๐
OpenOrca - Mistral - 7B - 8k
We have used our own OpenOrca dataset to fine-tune on top of Mistral 7B. This dataset is our attempt to reproduce the dataset generated for Microsoft Research's Orca Paper. We use OpenChat packing, trained with Axolotl.
This release is trained on a curated filtered subset of most of our GPT-4 augmented data. It is the same subset of our data as was used in our OpenOrcaxOpenChat-Preview2-13B model.
HF Leaderboard evals place this model as #1 for all models smaller than 30B at release time, outperforming all other 7B and 13B models!
This release provides a first: a fully open model with class-breaking performance, capable of running fully accelerated on even moderate consumer GPUs. Our thanks to the Mistral team for leading the way here.
We affectionately codename this model: "MistralOrca"
If you'd like to try the model now, we have it running on fast GPUs unquantized: https://huggingface.co/spaces/Open-Orca/Mistral-7B-OpenOrca
Want to visualize our full (pre-filtering) dataset? Check out our Nomic Atlas Map.
We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.
We will also give sneak-peak announcements on our Discord, which you can find here:
or check the OpenAccess AI Collective Discord for more information about Axolotl trainer here:
Quantized Models
Quantized versions of this model are generously made available by TheBloke.
- AWQ: https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-AWQ
- GPTQ: https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-GPTQ
- GGUF: https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-GGUF
Prompt Template
We used OpenAI's Chat Markup Language (ChatML) format, with <|im_start|>
and <|im_end|>
tokens added to support this.
This means that, e.g., in oobabooga the "MPT-Chat
" instruction template should work, as it also uses ChatML.
This formatting is also available via a pre-defined Transformers chat template,
which means that lists of messages can be formatted for you with the apply_chat_template()
method:
chat = [
{"role": "system", "content": "You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!"}
{"role": "user", "content": "How are you?"},
{"role": "assistant", "content": "I am doing well!"},
{"role": "user", "content": "Please tell me about how mistral winds have attracted super-orcas."},
]
tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
which will yield:
<|im_start|>system
You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!
<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
I am doing well!<|im_end|>
<|im_start|>user
Please tell me about how mistral winds have attracted super-orcas.<|im_end|>
<|im_start|>assistant
If you use tokenize=True
and return_tensors="pt"
instead, then you will get a tokenized
and formatted conversation ready to pass to model.generate()
.
Inference
See this notebook for inference details.
Note that you need the development snapshot of Transformers currently, as support for Mistral hasn't been released into PyPI yet:
pip install git+https://github.com/huggingface/transformers
Evaluation
HuggingFace Leaderboard Performance
We have evaluated using the methodology and tools for the HuggingFace Leaderboard, and find that we have dramatically improved upon the base model. We find 106% of the base model's performance on HF Leaderboard evals, averaging 65.84.
At release time, this beats all 7B and 13B models!
This is also 98.6% of Llama2-70b-chat
's performance!
Metric | Value |
---|---|
MMLU (5-shot) | 62.24 |
ARC (25-shot) | 64.08 |
HellaSwag (10-shot) | 83.99 |
TruthfulQA (0-shot) | 53.05 |
Avg. | 65.84 |
We use Language Model Evaluation Harness to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
AGIEval Performance
We compare our results to the base Mistral-7B model (using LM Evaluation Harness).
We find 129% of the base model's performance on AGI Eval, averaging 0.397.
As well, we significantly improve upon the official mistralai/Mistral-7B-Instruct-v0.1
finetuning, achieving 119% of their performance.
BigBench-Hard Performance
We find 119% of the base model's performance on BigBench-Hard, averaging 0.416.
GPT4ALL Leaderboard Performance
We gain a slight edge over our previous releases, again topping the leaderboard, averaging 72.38.
MT-Bench Performance
MT-Bench uses GPT-4 as a judge of model response quality, across a wide range of challenges.
We find our performance is on-par with Llama2-70b-chat
, averaging 6.86.
Dataset
We used a curated, filtered selection of most of the GPT-4 augmented data from our OpenOrca dataset, which aims to reproduce the Orca Research Paper dataset.
Training
We trained with 8x A6000 GPUs for 62 hours, completing 4 epochs of full fine tuning on our dataset in one training run. Commodity cost was ~$400.
Citation
@software{lian2023mistralorca1
title = {MistralOrca: Mistral-7B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
author = {Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca},
}
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
year={2023},
eprint={2301.13688},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
- Downloads last month
- 7