RichardErkhov's picture
uploaded readme
6b44119 verified
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
sarashina2-13b - GGUF
- Model creator: https://huggingface.co/sbintuitions/
- Original model: https://huggingface.co/sbintuitions/sarashina2-13b/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [sarashina2-13b.Q2_K.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q2_K.gguf) | Q2_K | 4.91GB |
| [sarashina2-13b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.IQ3_XS.gguf) | IQ3_XS | 5.41GB |
| [sarashina2-13b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.IQ3_S.gguf) | IQ3_S | 5.69GB |
| [sarashina2-13b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q3_K_S.gguf) | Q3_K_S | 5.69GB |
| [sarashina2-13b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.IQ3_M.gguf) | IQ3_M | 5.99GB |
| [sarashina2-13b.Q3_K.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q3_K.gguf) | Q3_K | 6.32GB |
| [sarashina2-13b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q3_K_M.gguf) | Q3_K_M | 6.32GB |
| [sarashina2-13b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q3_K_L.gguf) | Q3_K_L | 6.87GB |
| [sarashina2-13b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.IQ4_XS.gguf) | IQ4_XS | 6.99GB |
| [sarashina2-13b.Q4_0.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q4_0.gguf) | Q4_0 | 7.33GB |
| [sarashina2-13b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.IQ4_NL.gguf) | IQ4_NL | 7.37GB |
| [sarashina2-13b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q4_K_S.gguf) | Q4_K_S | 7.38GB |
| [sarashina2-13b.Q4_K.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q4_K.gguf) | Q4_K | 7.79GB |
| [sarashina2-13b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q4_K_M.gguf) | Q4_K_M | 7.79GB |
| [sarashina2-13b.Q4_1.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q4_1.gguf) | Q4_1 | 8.09GB |
| [sarashina2-13b.Q5_0.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q5_0.gguf) | Q5_0 | 8.86GB |
| [sarashina2-13b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q5_K_S.gguf) | Q5_K_S | 8.86GB |
| [sarashina2-13b.Q5_K.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q5_K.gguf) | Q5_K | 9.1GB |
| [sarashina2-13b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q5_K_M.gguf) | Q5_K_M | 9.1GB |
| [sarashina2-13b.Q5_1.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q5_1.gguf) | Q5_1 | 9.63GB |
| [sarashina2-13b.Q6_K.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q6_K.gguf) | Q6_K | 10.5GB |
| [sarashina2-13b.Q8_0.gguf](https://huggingface.co/RichardErkhov/sbintuitions_-_sarashina2-13b-gguf/blob/main/sarashina2-13b.Q8_0.gguf) | Q8_0 | 13.6GB |
Original model description:
---
license: mit
language:
- ja
- en
---
# Sarashina2-13B
This repository provides large language models trained by [SB Intuitions](https://www.sbintuitions.co.jp/).
## How to use
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed
model = AutoModelForCausalLM.from_pretrained("sbintuitions/sarashina2-13b", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("sbintuitions/sarashina2-13b")
# If you want to use slow tokenizer
# tokenizer = AutoTokenizer.from_pretrained("sbintuitions/sarashina2-13b", use_fast=False)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
set_seed(123)
text = generator(
"おはようございます、今日の天気は",
max_length=30,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=3,
)
for t in text:
print(t)
```
## Configuration
| Parameters | Vocab size | Training tokens | Architecture | Position type | Layers | Hidden dim | Attention heads |
| :-----: | :-----------: | :-------------: | :------------ | :-----------: | :----: | :--------: | :-------------: |
| [7B](https://huggingface.co/sbintuitions/sarashina2-7b) | 102400 | 2.1T | Llama2 | RoPE | 32 | 4096 | 32 |
| [13B](https://huggingface.co/sbintuitions/sarashina2-13b) | 102400 | 2.1T | Llama2 | RoPE | 40 | 5120 | 40 |
| [70B](https://huggingface.co/sbintuitions/sarashina2-70b) | 102400 | 2.1T | Llama2 | RoPE | 80 | 8192 | 64 |
## Training Corpus
For our Japanese training data, we used a Japanese portion of the [Common Crawl corpus](https://commoncrawl.org/), which is the largest Web corpus, as our training dataset.
To clean the training corpus, we used [CCNet](https://github.com/facebookresearch/cc_net) and [HojiChar](https://github.com/HojiChar/HojiChar).
After cleaning, our Japanese training data contains about 1T tokens.
For our English training data, we extracted English documents from [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B) but we removed books3 corpus due to copyright infringement.
## Tokenization
We use a [sentencepiece](https://github.com/google/sentencepiece) tokenizer with a unigram language model and byte-fallback.
We do not apply pre-tokenization with Japanese tokenizer.
Thus, a user may directly feed raw sentences into the tokenizer.
## Ethical Considerations and Limitations
Sarashina2 has not been tuned to follow an instruction yet.
Therefore, sarashina2 might generate some meaningless sequences, some inaccurate instances or biased/objectionable outputs.
Before using sarashina2, we would like developers to tune models based on human preferences and safety considerations.
## License
[MIT License](https://huggingface.co/sbintuitions/sarashina2-7b/blob/main/LICENSE)