YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
opt-350m-magicprompt-SD - AWQ
- Model creator: https://huggingface.co/pszemraj/
- Original model: https://huggingface.co/pszemraj/opt-350m-magicprompt-SD/
Original model description:
license: other tags: - generated_from_trainer - stable diffusion - diffusion - text2image - prompt augment - prompt engineering datasets: - Gustavosta/Stable-Diffusion-Prompts widget: - text: morning sun over Jakarta example_title: morning sun - text: 'WARNING: pip is' example_title: pip - text: sentient cheese example_title: sentient cheese - text: cheeps are example_title: cheeps - text: avocado armchair example_title: creative prompt - text: Landscape of example_title: landscape parameters: min_length: 16 max_length: 96 no_repeat_ngram_size: 1 do_sample: true base_model: facebook/opt-350m model-index: - name: opt-350m-magicprompt-SD results: []
opt-350m-magicprompt-SD
Generate/augment your prompt, stable diffusion style.
This model is a fine-tuned version of facebook/opt-350m on the Gustavosta/Stable-Diffusion-Prompts dataset. It achieves the following results on the evaluation set:
- Loss: 1.2987
- eval_steps_per_second = 16.623
- perplexity = 3.6644
example
output (on DALL-E 2, but as words are words, works anywhere)
Training and evaluation data
refer to the Gustavosta/Stable-Diffusion-Prompts
dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 32
- total_train_batch_size: 512
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8568 | 0.95 | 16 | 2.5937 |
2.2487 | 1.95 | 32 | 2.1050 |
1.9011 | 2.95 | 48 | 1.8082 |
1.6837 | 3.95 | 64 | 1.6178 |
1.4887 | 4.95 | 80 | 1.4897 |
1.3812 | 5.95 | 96 | 1.4017 |
1.2944 | 6.95 | 112 | 1.3437 |
1.2574 | 7.95 | 128 | 1.3127 |
1.2325 | 8.95 | 144 | 1.3009 |
1.2223 | 9.95 | 160 | 1.2987 |
Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 2