YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Aira-2-portuguese-1B7 - bnb 8bits

Original model description:

license: bigscience-bloom-rail-1.0 datasets: - nicholasKluge/instruct-aira-dataset language: - pt metrics: - accuracy library_name: transformers tags: - alignment - instruction tuned - text generation - conversation - assistant pipeline_tag: text-generation widget: - text: "<|startofinstruction|>Me explique o que é Aprendizagem de Máquina?<|endofinstruction|>" example_title: Aprendizagem de Máquina - text: "<|startofinstruction|>Você sabe alguma coisa sobre a Ética das Virtudes?<|endofinstruction|>" example_title: Ética - text: "<|startofinstruction|>Como eu posso fazer a minha namorada feliz?<|endofinstruction|>" example_title: Conselho inference: parameters: repetition_penalty: 1.2 temperature: 0.2 top_k: 30 top_p: 0.3 max_new_tokens: 100 length_penalty: 0.3 early_stopping: true co2_eq_emissions: emissions: 1990 source: CodeCarbon training_type: fine-tuning geographical_location: Singapore hardware_used: NVIDIA A100-SXM4-40GB

Aira-2-portuguese-1B7

Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-portuguese-1B7 is an instruction-tuned model based on BLOOM. The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).

Check our gradio-demo in Spaces.

Details

  • Size: 1,722,005,504 parameters
  • Dataset: Instruct-Aira Dataset
  • Language: Portuguese
  • Number of Epochs: 3
  • Batch size: 4
  • Optimizer: torch.optim.AdamW (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
  • GPU: 1 NVIDIA A100-SXM4-40GB
  • Emissions: 1.99 KgCO2 (Singapore)
  • Total Energy Consumption: 4.09 kWh

This repository has the source code used to train this model.

Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

<|startofinstruction|>O que é um modelo de linguagem?<|endofinstruction|>Um modelo de linguagem é uma distribuição de probabilidade sobre um vocabulário.<|endofcompletion|>

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

device = torch.device("cuda"  if torch.cuda.is_available() else  "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-portuguese-1B7')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-portuguese-1B7')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
  add_special_tokens=False,
  return_tensors="pt").to(device)

responses = aira.generate(**inputs,
    do_sample=True,
    top_k=50,
    top_p=0.95,
    temperature=0.7,
    num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
    print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')

The model will output something like:

>>> Question: 👤 Qual a capital da Alemanha?

>>>Response 1: 🤖 A capital da Alemanha é Berlim. É a maior cidade da Alemanha e serve como centro administrativo, cultural e político da Alemanha.
>>>Response 2: 🤖 A capital da Alemanha é Berlim. É a maior cidade da Alemanha e serve como centro administrativo, cultural e político da Alemanha.

Limitations

  • Hallucinations: This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.

  • Biases and Toxicity: This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.

  • Repetition and Verbosity: The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.

Cite as 🤗

@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://github.com/Nkluge-correa/Aira},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
}

@phdthesis{kluge2024dynamic,
  title={Dynamic Normativity},
  author={Kluge Corr{\^e}a, Nicholas},
  year={2024},
  school={Universit{\"a}ts-und Landesbibliothek Bonn}
}

License

Aira-2-portuguese-1B7 is licensed under the RAIL License since it is a model derived from BLOOM. See the LICENSE file for more details.

Downloads last month
12
Safetensors
Model size
1.72B params
Tensor type
F32
·
FP16
·
I8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.