RichardErkhov's picture
uploaded readme
a6d6b1d verified
|
raw
history blame
4.19 kB
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
polka-1.1b-chat - bnb 8bits
- Model creator: https://huggingface.co/eryk-mazus/
- Original model: https://huggingface.co/eryk-mazus/polka-1.1b-chat/
Original model description:
---
tags:
- generated_from_trainer
- conversational
- polish
license: mit
language:
- pl
datasets:
- eryk-mazus/polka-dpo-v1
pipeline_tag: text-generation
inference: false
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61bf0e11c88f3fd22f654059/FiMCITBAaEyMyxCHhfWVD.png)
# Polka-1.1B-Chat
`eryk-mazus/polka-1.1b-chat` **is the first polish model trained to act as a helpful, conversational assistant that can be run locally.**
The model is based on [TinyLlama-1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) with the custom, extended tokenizer for more efficient Polish text generation, that was additionally pretrained on 5.7 billion tokens. **It was then fine-tuned on around 60k synthetically generated and machine-translated multi-turn conversations with the [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) performed on top of it.**
Context size: 4,096 tokens
In addition, we're releasing:
* [polka-1.1b](https://huggingface.co/eryk-mazus/polka-1.1b) - our base model with an extended tokenizer and additional pre-training on Polish corpus sampled using [DSIR](https://github.com/p-lambda/dsir)
* [polka-pretrain-en-pl-v1](https://huggingface.co/datasets/eryk-mazus/polka-pretrain-en-pl-v1) - the pre-training dataset
* [polka-dpo-v1](https://huggingface.co/datasets/eryk-mazus/polka-dpo-v1) - dataset of DPO pairs
* [polka-1.1b-chat-gguf](https://huggingface.co/eryk-mazus/polka-1.1b-chat-gguf) - GGUF files for the chat model
## Usage
Sample code:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
model_name = "eryk-mazus/polka-1.1b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16,
device_map="auto"
)
streamer = TextStreamer(tokenizer, skip_prompt=True)
# You are a helpful assistant.
system_prompt = "Jeste艣 pomocnym asystentem."
chat = [{"role": "system", "content": system_prompt}]
# Compose a short song on programming.
user_input = "Napisz kr贸tk膮 piosenk臋 o programowaniu."
chat.append({"role": "user", "content": user_input})
# Generate - add_generation_prompt to make sure it continues as assistant
inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt")
# For multi-GPU, find the device of the first parameter of the model
first_param_device = next(model.parameters()).device
inputs = inputs.to(first_param_device)
with torch.no_grad():
outputs = model.generate(
inputs,
pad_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
temperature=0.2,
repetition_penalty=1.15,
top_p=0.95,
do_sample=True,
streamer=streamer,
)
# Add just the new tokens to our chat
new_tokens = outputs[0, inputs.size(1):]
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
chat.append({"role": "assistant", "content": response})
```
The model works seamlessly with [vLLM](https://github.com/vllm-project/vllm) as well.
## Prompt format
This model uses ChatML as the prompt format:
```
<|im_start|>system
Jeste艣 pomocnym asystentem.
<|im_start|>user
Jakie jest dzienne zapotrzebowanie kaloryczne doros艂ej osoby?<|im_end|>
<|im_start|>assistant
Dla doros艂ych os贸b zaleca si臋 spo偶ywanie oko艂o 2000-3000 kcal dziennie, aby utrzyma膰 optymalne zdrowie i dobre samopoczucie.<|im_end|>
```
This prompt is available as a [chat template](https://huggingface.co/docs/transformers/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method, as demonstrated in the example above.