RichardErkhov's picture
uploaded readme
5555fb4 verified
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
opt-history-v2 - AWQ
- Model creator: https://huggingface.co/ambrosfitz/
- Original model: https://huggingface.co/ambrosfitz/opt-history-v2/
Original model description:
---
license: other
base_model: facebook/opt-350m
tags:
- generated_from_trainer
model-index:
- name: opt-history-gen2
results: []
datasets:
- ambrosfitz/just_history
- ambrosfitz/synth_history_sentences
- ambrosfitz/ps_history_txt
- ambrosfitz/ah_analysis_multihistory
language:
- en
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-history-gen2
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8025
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.1245 | 0.1693 | 100 | 3.0013 |
| 2.9473 | 0.3386 | 200 | 2.9180 |
| 2.9014 | 0.5078 | 300 | 2.8787 |
| 2.873 | 0.6771 | 400 | 2.8646 |
| 2.8631 | 0.8464 | 500 | 2.8631 |
| 2.8366 | 1.0157 | 600 | 2.8451 |
| 2.64 | 1.1849 | 700 | 2.8380 |
| 2.6295 | 1.3542 | 800 | 2.8202 |
| 2.6272 | 1.5235 | 900 | 2.7987 |
| 2.6327 | 1.6928 | 1000 | 2.7971 |
| 2.626 | 1.8620 | 1100 | 2.7739 |
| 2.5237 | 2.0313 | 1200 | 2.7829 |
| 2.3242 | 2.2006 | 1300 | 2.7812 |
| 2.319 | 2.3699 | 1400 | 2.7727 |
| 2.3314 | 2.5391 | 1500 | 2.7668 |
| 2.3579 | 2.7084 | 1600 | 2.7561 |
| 2.307 | 2.8777 | 1700 | 2.7586 |
| 2.2612 | 3.0470 | 1800 | 2.7795 |
| 2.056 | 3.2163 | 1900 | 2.7801 |
| 2.0802 | 3.3855 | 2000 | 2.7670 |
| 2.1104 | 3.5548 | 2100 | 2.7708 |
| 2.1115 | 3.7241 | 2200 | 2.7629 |
| 2.0828 | 3.8934 | 2300 | 2.7606 |
| 1.996 | 4.0626 | 2400 | 2.7849 |
| 1.8701 | 4.2319 | 2500 | 2.7938 |
| 1.92 | 4.4012 | 2600 | 2.7928 |
| 1.8844 | 4.5705 | 2700 | 2.7846 |
| 1.9058 | 4.7397 | 2800 | 2.7840 |
| 1.901 | 4.9090 | 2900 | 2.7821 |
| 1.8418 | 5.0783 | 3000 | 2.8017 |
| 1.757 | 5.2476 | 3100 | 2.8055 |
| 1.7503 | 5.4168 | 3200 | 2.8095 |
| 1.7606 | 5.5861 | 3300 | 2.8065 |
| 1.7316 | 5.7554 | 3400 | 2.8043 |
| 1.7632 | 5.9247 | 3500 | 2.8025 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1