|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
firefly-qwen1.5-en-7b-unsloth - GGUF |
|
- Model creator: https://huggingface.co/YeungNLP/ |
|
- Original model: https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b-unsloth/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q2_K.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q2_K.gguf) | Q2_K | 2.89GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.IQ3_XS.gguf) | IQ3_XS | 3.18GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.IQ3_S.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.IQ3_S.gguf) | IQ3_S | 3.32GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q3_K_S.gguf) | Q3_K_S | 3.32GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.IQ3_M.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.IQ3_M.gguf) | IQ3_M | 3.48GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q3_K.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q3_K.gguf) | Q3_K | 3.65GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q3_K_M.gguf) | Q3_K_M | 3.65GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q3_K_L.gguf) | Q3_K_L | 3.93GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.IQ4_XS.gguf) | IQ4_XS | 4.02GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q4_0.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q4_0.gguf) | Q4_0 | 4.2GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.IQ4_NL.gguf) | IQ4_NL | 4.22GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q4_K_S.gguf) | Q4_K_S | 4.23GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q4_K.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q4_K.gguf) | Q4_K | 3.95GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q4_K_M.gguf) | Q4_K_M | 0.95GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q4_1.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q4_1.gguf) | Q4_1 | 0.01GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q5_0.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q5_0.gguf) | Q5_0 | 0.01GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q5_K_S.gguf) | Q5_K_S | 0.01GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q5_K.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q5_K.gguf) | Q5_K | 0.01GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q5_K_M.gguf) | Q5_K_M | 0.01GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q5_1.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q5_1.gguf) | Q5_1 | 0.01GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q6_K.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q6_K.gguf) | Q6_K | 0.01GB | |
|
| [firefly-qwen1.5-en-7b-unsloth.Q8_0.gguf](https://huggingface.co/RichardErkhov/YeungNLP_-_firefly-qwen1.5-en-7b-unsloth-gguf/blob/main/firefly-qwen1.5-en-7b-unsloth.Q8_0.gguf) | Q8_0 | 0.01GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
basemodel: Qwen/Qwen1.5-7B |
|
--- |
|
|
|
## Unsloth x Qwen2 |
|
[Unsloth](https://github.com/unslothai/unsloth) can speed up training LLM and reduce memory usage, but currently it only supports Llama3, Mistral, Gemma, ORPR, Phi-3 and TinyLlama. |
|
We can't train Qwen2 with Unsloth, even though Qwen2 is popular in community. |
|
|
|
It's exciting that we succeed to make Unsloth support Qwen2, it can speed up training and reduce much memory usage. |
|
If you want to train Qwen2 with Unsloth, you can use [our repo](https://github.com/yangjianxin1/unsloth) rather than the official one. And we will commit our code to the [official repo](https://github.com/unslothai/unsloth). |
|
|
|
Install our Unsloth: |
|
```bash |
|
pip install git+https://github.com/yangjianxin1/unsloth.git |
|
``` |
|
|
|
[Firefly](https://github.com/yangjianxin1/Firefly) already supports training Qwen2 with Unsloth, and the subsequent models are trained with Firefly, you can try it. |
|
|
|
|
|
## Model Card for Firefly-Qwen1.5-Unsloth |
|
[firefly-qwen1.5-en-7b-unsloth](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b-unsloth) and [firefly-qwen1.5-en-7b-dpo-v0.1-unloth](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b-dpo-v0.1-unsloth) are trained based on [Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) to act as a helpful and harmless AI assistant. |
|
We use [Firefly](https://github.com/yangjianxin1/Firefly) to train our models on **a single V100 GPU** with QLoRA and [Unsloth](https://github.com/yangjianxin1/unsloth). |
|
firefly-qwen1.5-en-7b-unsloth is fine-tuned based on Qwen1.5-7B with English instruction data, and firefly-qwen1.5-en-7b-dpo-v0.1-unsloth is trained with [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) based on firefly-qwen1.5-en-7b-unsloth. |
|
|
|
Our models outperform official [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat), [Gemma-7B-it](https://huggingface.co/google/gemma-7b-it), [Zephyr-7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). |
|
|
|
Although our models are trained with English data, you can also try to chat with models in Chinese because Qwen1.5 is also good at Chinese. But we have not evaluated |
|
the performance in Chinese yet. |
|
|
|
We advise you to install transformers>=4.37.0. |
|
|
|
## Performance |
|
We have evaluated the training gain of Qwen1.5-7B, we use QLoRA and Unsloth to train model for 20 steps on a single V100. The result can be listed as follows. |
|
**Unsloth can reduce GPU memory by 39.13% and training time by 32.12%, and the training speed can increase by 47.32%.** |
|
|
|
| max_seq_length | per_device_train_batch_size | gradient_accumulation_steps | use_unsloth | rank | GPU | Time | |
|
|----------------|----------------------------|-----------------------------|-------------|------|-------------------------|-------------------| |
|
| 1024 | 1 | 16 | false | 8 | 13.72GB | 448s | |
|
| 1024 | 1 | 16 | true | 8 | **8.43GB**(**-38.56%**) | 308s(**-31.25%**) | |
|
| 1024 | 1 | 16 | false | 64 | 16.01GB | 452s | |
|
| 1024 | 1 | 16 | true | 64 | 11.07GB(**-30.86%**) | 311s(**-31.19%**) | |
|
| 2048 | 1 | 16 | false | 64 | 18.55GB | 840s | |
|
| 2048 | 1 | 16 | true | 64 | 12.99GB(**-29.97%**) | 596s(**-29.05%**) | |
|
| 1024 | 4 | 4 | false | 64 | 24.70GB | 357s | |
|
| 1024 | 4 | 4 | true | 64 | 14.36GB(**-41.86%**) | 253s(**-29.13%**) | |
|
| 2048 | 4 | 4 | false | 64 | 32.51GB | 741s | |
|
| 2048 | 4 | 4 | true | 64 | 19.79GB(**-39.13%**) | 503s(**-32.12%**) | |
|
|
|
|
|
We evaluate our sft and dpo models on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), they achieve good performance. |
|
|
|
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |
|
|--------------------------------------------|---------|--------|-----------|-------|------------|------------|--------| |
|
| firefly-gemma-7b | 62.93 | 62.12 | 79.77 | 61.57 | 49.41 | 75.45 | 49.28 | |
|
| **firefly-qwen1.5-en-7b-dpo-v0.1-unsloth** | 62.65 | 56.14 | 75.5 | 60.87 | 58.09 | 70.72 | 54.59 | |
|
| zephyr-7b-beta | 61.95 | 62.03 | 84.36 | 61.07 | 57.45 | 77.74 | 29.04 | |
|
| **firefly-qwen1.5-en-7b-unsloth** | 61.81 | 54.27 | 76.22 | 61.55 | 50.62 | 70.48 | 57.7 | |
|
| vicuna-13b-v1.5 | 55.41 | 57.08 | 81.24 | 56.67 | 51.51 | 74.66 | 11.3 | |
|
| Xwin-LM-13B-V0.1 | 55.29 | 62.54 | 82.8 | 56.53 | 45.96 | 74.27 | 9.63 | |
|
| Qwen1.5-7B-Chat | 55.15 | 55.89 | 78.56 | 61.65 | 53.54 | 67.72 | 13.57 | |
|
| gemma-7b-it | 53.56 | 51.45 | 71.96 | 53.52 | 47.29 | 67.96 | 29.19 | |
|
|
|
|
|
|
|
## Usage |
|
The chat templates of our chat models are the same as Official Qwen1.5-7B-Chat: |
|
```text |
|
<|im_start|>system |
|
You are a helpful assistant.<|im_end|> |
|
<|im_start|>user |
|
hello, who are you?<|im_end|> |
|
<|im_start|>assistant |
|
I am a AI program developed by Firefly<|im_end|> |
|
``` |
|
|
|
You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py). |
|
|
|
You can also use the following code: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_name_or_path = "YeungNLP/firefly-qwen1.5-en-7b-unsloth" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto', |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) |
|
|
|
prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. " |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to('cuda') |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=1500, |
|
top_p = 0.9, |
|
temperature = 0.35, |
|
repetition_penalty = 1.0, |
|
eos_token_id=tokenizer.encode('<|im_end|>', add_special_tokens=False) |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(response) |
|
``` |
|
|
|
## Training Details |
|
Both in SFT and DPO stages, **We only use a single V100 GPU** with QLoRA and Unsloth, and we use [Firefly](https://github.com/yangjianxin1/Firefly) to train our models. |
|
|
|
### Training Setting |
|
The following hyperparameters are used during SFT: |
|
- num_epochs: 1 |
|
- learning_rate: 2e-4 |
|
- total_train_batch_size: 32 |
|
- max_seq_length: 2048 |
|
- optimizer: paged_adamw_32bit |
|
- lr_scheduler_type: constant_with_warmup |
|
- warmup_steps: 600 |
|
- lora_rank: 64 |
|
- lora_alpha: 16 |
|
- lora_dropout: 0.05 |
|
- gradient_checkpointing: true |
|
- fp16: true |
|
|
|
The following hyperparameters were used during DPO: |
|
- num_epochs: 1 |
|
- learning_rate: 2e-4 |
|
- total_train_batch_size: 32 |
|
- max_seq_length: 2048 |
|
- max_prompt_length: 500 |
|
- optimizer: paged_adamw_32bit |
|
- lr_scheduler_type: constant_with_warmup |
|
- warmup_steps: 100 |
|
- lora_rank: 64 |
|
- lora_alpha: 16 |
|
- lora_dropout: 0.05 |
|
- gradient_checkpointing: true |
|
- fp16: true |
|
|
|
|
|
### Training metrics |
|
|
|
The table below shows the full set of DPO training metrics: |
|
|
|
| Epoch | Step | Loss | Rewards/accuracies | Rewards/margins | Rewards/chosen | Rewards/rejected | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | |
|
|-------|------|--------|--------------------|-----------------|----------------|------------------|---------------|-----------------|--------------|----------------| |
|
| 0.05 | 100 | 0.6128 | 0.6572 | 0.3914 | -0.0622 | -0.4537 | 1.107 | 1.1104 | -283.7632 | -264.5925 | |
|
| 0.1 | 200 | 0.6066 | 0.6913 | 0.662 | -0.3589 | -1.0209 | 0.9433 | 0.9431 | -279.0002 | -268.6432 | |
|
| 0.16 | 300 | 0.5803 | 0.7069 | 0.876 | -0.3849 | -1.2609 | 0.8411 | 0.8537 | -289.9482 | -274.3425 | |
|
| 0.21 | 400 | 0.5624 | 0.7169 | 0.9575 | -0.2447 | -1.2022 | 0.7615 | 0.7497 | -293.8072 | -274.4167 | |
|
| 0.26 | 500 | 0.5863 | 0.7 | 0.8908 | -0.5283 | -1.4191 | 0.537 | 0.5085 | -284.3388 | -267.9294 | |
|
| 0.31 | 600 | 0.5612 | 0.7166 | 1.0791 | -0.592 | -1.6711 | 0.7121 | 0.7219 | -293.2425 | -278.5992 | |
|
| 0.37 | 700 | 0.5741 | 0.7234 | 1.0742 | -0.8469 | -1.9211 | 0.6002 | 0.5769 | -300.8099 | -285.9137 | |
|
| 0.42 | 800 | 0.582 | 0.7141 | 1.0414 | -1.1658 | -2.2072 | 0.7191 | 0.5934 | -300.458 | -286.1 | |
|
| 0.47 | 900 | 0.5694 | 0.7178 | 1.2055 | -1.7372 | -2.9426 | 0.4226 | 0.316 | -305.5303 | -290.7548 | |
|
| 0.52 | 1000 | 0.5827 | 0.7134 | 1.1063 | -1.354 | -2.4603 | 0.535 | 0.4022 | -302.7598 | -286.636 | |
|
| 0.58 | 1100 | 0.5553 | 0.7306 | 1.3631 | -1.5861 | -2.9492 | 0.7636 | 0.6559 | -312.9375 | -290.3474 | |
|
| 0.63 | 1200 | 0.5633 | 0.7341 | 1.2689 | -1.7187 | -2.9876 | 0.6555 | 0.5894 | -315.0179 | -298.2406 | |
|
| 0.68 | 1300 | 0.5705 | 0.7284 | 1.3501 | -1.7762 | -3.1263 | 0.7419 | 0.6874 | -310.9056 | -294.2934 | |
|
| 0.73 | 1400 | 0.5458 | 0.7347 | 1.4555 | -2.2377 | -3.6932 | 0.7279 | 0.6564 | -309.141 | -299.1613 | |
|
| 0.79 | 1500 | 0.5797 | 0.7222 | 1.2937 | -2.4483 | -3.742 | 0.8444 | 0.771 | -321.578 | -298.111 | |
|
| 0.84 | 1600 | 0.5572 | 0.7319 | 1.4824 | -2.9344 | -4.4168 | 0.9202 | 0.8605 | -323.4034 | -307.0114 | |
|
| 0.89 | 1700 | 0.5518 | 0.7281 | 1.4263 | -2.7301 | -4.1564 | 0.9257 | 0.8785 | -313.694 | -298.1267 | |
|
| 0.94 | 1800 | 0.5572 | 0.7272 | 1.5121 | -2.9505 | -4.4627 | 0.7899 | 0.7503 | -314.1552 | -305.9873 | |
|
| 0.99 | 1900 | 0.5763 | 0.7241 | 1.4982 | -2.7064 | -4.2047 | 0.7841 | 0.7023 | -310.6677 | -299.5064 | |
|
|
|
|