YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
vortex-3b-v2 - GGUF
- Model creator: https://huggingface.co/OEvortex/
- Original model: https://huggingface.co/OEvortex/vortex-3b-v2/
Name | Quant method | Size |
---|---|---|
vortex-3b-v2.Q2_K.gguf | Q2_K | 1.01GB |
vortex-3b-v2.IQ3_XS.gguf | IQ3_XS | 1.14GB |
vortex-3b-v2.IQ3_S.gguf | IQ3_S | 1.16GB |
vortex-3b-v2.Q3_K_S.gguf | Q3_K_S | 1.16GB |
vortex-3b-v2.IQ3_M.gguf | IQ3_M | 1.28GB |
vortex-3b-v2.Q3_K.gguf | Q3_K | 1.38GB |
vortex-3b-v2.Q3_K_M.gguf | Q3_K_M | 1.38GB |
vortex-3b-v2.Q3_K_L.gguf | Q3_K_L | 1.49GB |
vortex-3b-v2.IQ4_XS.gguf | IQ4_XS | 1.43GB |
vortex-3b-v2.Q4_0.gguf | Q4_0 | 1.49GB |
vortex-3b-v2.IQ4_NL.gguf | IQ4_NL | 1.5GB |
vortex-3b-v2.Q4_K_S.gguf | Q4_K_S | 1.5GB |
vortex-3b-v2.Q4_K.gguf | Q4_K | 1.66GB |
vortex-3b-v2.Q4_K_M.gguf | Q4_K_M | 1.66GB |
vortex-3b-v2.Q4_1.gguf | Q4_1 | 1.64GB |
vortex-3b-v2.Q5_0.gguf | Q5_0 | 1.8GB |
vortex-3b-v2.Q5_K_S.gguf | Q5_K_S | 1.8GB |
vortex-3b-v2.Q5_K.gguf | Q5_K | 1.93GB |
vortex-3b-v2.Q5_K_M.gguf | Q5_K_M | 1.93GB |
vortex-3b-v2.Q5_1.gguf | Q5_1 | 1.95GB |
vortex-3b-v2.Q6_K.gguf | Q6_K | 2.12GB |
vortex-3b-v2.Q8_0.gguf | Q8_0 | 2.75GB |
Original model description:
language: - en license: other tags: - HelpingAI - vortex datasets: - OEvortex/uncensored-vortex license_name: hsul license_link: https://huggingface.co/OEvortex/vortex-3b/raw/main/LICENSE.md pipeline_tag: text-generation model-index: - name: vortex-3b-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 39.68 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OEvortex/vortex-3b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 65.04 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OEvortex/vortex-3b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.09 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OEvortex/vortex-3b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 33.8 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OEvortex/vortex-3b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 59.12 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OEvortex/vortex-3b-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 2.05 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OEvortex/vortex-3b-v2 name: Open LLM Leaderboard
Vortex-3b-v2 is an upgraded version of the Vortex-3b model ie. a 2.78 billion parameter causal language model created by OEvortex that was derived from EleutherAI's Pythia-2.8b and trained on 79% of uncensored-vortex dataset
from transformers import pipeline
# Initialize the pipeline
pipe = pipeline("text-generation", model="OEvortex/vortex-3b-v2")
# Use the pipeline
text = "Once upon a time"
generated_text = pipe(text, max_length=100, do_sample=True)[0]['generated_text']
print(generated_text)
# Use a pipeline as a high-level helper
from transformers import pipeline
text = pipeline(model="OEvortex/vortex-3b-v2", torch_dtype=torch.bfloat16, device_map="auto")
res = text("Explain to me the difference between nuclear fission and fusion.")
print(res[0]["text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | vortex 3b | vortex 3b-v2 | dolly-v2-3b | pythia-2.8b-deduped |
---|---|---|---|---|
Avg. | 35.76 | 37.46 | 25.26 | 36.72 |
AI2 Reasoning Challenge (25-Shot) | 31.91 | 39.68 | 22.83 | 36.26 |
HellaSwag (10-Shot) | 56.89 | 65.04 | 26.55 | 60.66 |
MMLU (5-Shot) | 27.32 | 25.09 | 24.7 | 26.78 |
TruthfulQA (0-shot) | 37.39 | 33.80 | 0 | 35.56 |
Winogrande (5-shot) | 60.14 | 59.12 | 59.43 | 60.22 |
GSM8k (5-shot) | 0.91 | 2.05 | 1.86 | 0.83 |
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.