YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Ninja-v1-NSFW-128k - GGUF

Original model description:

license: apache-2.0 language: - en - ja tags: - finetuned - not-for-all-audiences library_name: transformers pipeline_tag: text-generation

Our Models

Model Card for Ninja-v1-NSFW-128k

The Mistral-7B--based Large Language Model (LLM) is an noveldataset fine-tuned version of the Mistral-7B-v0.1

Ninja-NSFW-128k has the following changes compared to Mistral-7B-v0.1.

  • 128k context window (8k context in v0.1)
  • Achieving both high quality Japanese and English generation
  • Memory ability that does not forget even after long-context generation
  • Can be generated NSFW

This model was created with the help of GPUs from the first LocalAI hackathon.

We would like to take this opportunity to thank

List of Creation Methods

  • Chatvector for multiple models
  • Simple linear merging of result models
  • Domain and Sentence Enhancement with LORA
  • Context expansion

Instruction format

Ninja adopts the prompt format from Vicuna and supports multi-turn conversation. The prompt should be as following:

USER: Hi ASSISTANT: Hello.</s>
USER: Who are you?
ASSISTANT: I am ninja.</s>

Example prompts to improve (Japanese)

  • BAD:ใ€€ใ‚ใชใŸใฏโ—‹โ—‹ใจใ—ใฆๆŒฏใ‚‹่ˆžใ„ใพใ™

  • GOOD: ใ‚ใชใŸใฏโ—‹โ—‹ใงใ™

  • BAD: ใ‚ใชใŸใฏโ—‹โ—‹ใŒใงใใพใ™

  • GOOD: ใ‚ใชใŸใฏโ—‹โ—‹ใ‚’ใ—ใพใ™

Performing inference

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "Local-Novel-LLM-project/Ninja-v1-NSFW-128k"
new_tokens = 1024

model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)

system_prompt = "ใ‚ใชใŸใฏใƒ—ใƒญใฎๅฐ่ชฌๅฎถใงใ™ใ€‚\nๅฐ่ชฌใ‚’ๆ›ธใ„ใฆใใ ใ•ใ„\n-------- "

prompt = input("Enter a prompt: ")
system_prompt += prompt + "\n-------- "
model_inputs = tokenizer([system_prompt], return_tensors="pt").to("cuda")


generated_ids = model.generate(**model_inputs, max_new_tokens=new_tokens, do_sample=True)
print(tokenizer.batch_decode(generated_ids)[0])

Merge recipe

  • WizardLM2 - mistralai/Mistral-7B-v0.1
  • NousResearch/Yarn-Mistral-7b-128k - mistralai/Mistral-7B-v0.1
  • Elizezen/Antler-7B - stabilityai/japanese-stablelm-instruct-gamma-7b
  • Elizezen/LewdSniffyOtter-7B - Elizezen/SniffyOtter-7B
  • NTQAI/chatntq-ja-7b-v1.0

The characteristics of each model are as follows.

  • WizardLM2: High quality multitasking model
  • Yarn-Mistral-7b-128k: Mistral model with 128k context window
  • Antler-7B: Model specialized for novel writing
  • NTQAI/chatntq-ja-7b-v1.0 High quality Japanese specialized model
  • Elizezen/LewdSniffyOtter-7B Japanese NSFW specialized model

Other points to keep in mind

  • The training data may be biased. Be careful with the generated sentences.
  • Set trust_remote_code to True for context expansion with YaRN.
  • Memory usage may be large for long inferences.
  • If possible, we recommend inferring with llamacpp rather than Transformers.
Downloads last month
3,726
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.