|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
zephyr-7b-alpha - GGUF |
|
- Model creator: https://huggingface.co/HuggingFaceH4/ |
|
- Original model: https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [zephyr-7b-alpha.Q2_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q2_K.gguf) | Q2_K | 2.53GB | |
|
| [zephyr-7b-alpha.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.IQ3_XS.gguf) | IQ3_XS | 2.81GB | |
|
| [zephyr-7b-alpha.IQ3_S.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.IQ3_S.gguf) | IQ3_S | 2.96GB | |
|
| [zephyr-7b-alpha.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q3_K_S.gguf) | Q3_K_S | 2.95GB | |
|
| [zephyr-7b-alpha.IQ3_M.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.IQ3_M.gguf) | IQ3_M | 3.06GB | |
|
| [zephyr-7b-alpha.Q3_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q3_K.gguf) | Q3_K | 3.28GB | |
|
| [zephyr-7b-alpha.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q3_K_M.gguf) | Q3_K_M | 3.28GB | |
|
| [zephyr-7b-alpha.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q3_K_L.gguf) | Q3_K_L | 3.56GB | |
|
| [zephyr-7b-alpha.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.IQ4_XS.gguf) | IQ4_XS | 3.67GB | |
|
| [zephyr-7b-alpha.Q4_0.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q4_0.gguf) | Q4_0 | 3.83GB | |
|
| [zephyr-7b-alpha.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.IQ4_NL.gguf) | IQ4_NL | 3.87GB | |
|
| [zephyr-7b-alpha.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q4_K_S.gguf) | Q4_K_S | 3.86GB | |
|
| [zephyr-7b-alpha.Q4_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q4_K.gguf) | Q4_K | 4.07GB | |
|
| [zephyr-7b-alpha.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q4_K_M.gguf) | Q4_K_M | 4.07GB | |
|
| [zephyr-7b-alpha.Q4_1.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q4_1.gguf) | Q4_1 | 4.24GB | |
|
| [zephyr-7b-alpha.Q5_0.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q5_0.gguf) | Q5_0 | 4.65GB | |
|
| [zephyr-7b-alpha.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q5_K_S.gguf) | Q5_K_S | 4.65GB | |
|
| [zephyr-7b-alpha.Q5_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q5_K.gguf) | Q5_K | 4.78GB | |
|
| [zephyr-7b-alpha.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q5_K_M.gguf) | Q5_K_M | 4.78GB | |
|
| [zephyr-7b-alpha.Q5_1.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q5_1.gguf) | Q5_1 | 5.07GB | |
|
| [zephyr-7b-alpha.Q6_K.gguf](https://huggingface.co/RichardErkhov/HuggingFaceH4_-_zephyr-7b-alpha-gguf/blob/main/zephyr-7b-alpha.Q6_K.gguf) | Q6_K | 5.53GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: zephyr-7b-alpha |
|
results: [] |
|
license: mit |
|
datasets: |
|
- stingning/ultrachat |
|
- openbmb/UltraFeedback |
|
language: |
|
- en |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
|
|
|
|
# Model Card for Zephyr 7B Alpha |
|
|
|
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-α is the first model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so. |
|
|
|
|
|
## Model description |
|
|
|
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. |
|
- **Language(s) (NLP):** Primarily English |
|
- **License:** MIT |
|
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
|
|
### Model Sources |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** https://github.com/huggingface/alignment-handbook |
|
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat |
|
|
|
## Intended uses & limitations |
|
|
|
The model was initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. |
|
|
|
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: |
|
|
|
```python |
|
# Install transformers from source - only needed for versions <= v4.34 |
|
# pip install git+https://github.com/huggingface/transformers.git |
|
# pip install accelerate |
|
|
|
import torch |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a friendly chatbot who always responds in the style of a pirate", |
|
}, |
|
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, |
|
] |
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
# <|system|> |
|
# You are a friendly chatbot who always responds in the style of a pirate.</s> |
|
# <|user|> |
|
# How many helicopters can a human eat in one sitting?</s> |
|
# <|assistant|> |
|
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food! |
|
``` |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
Zephyr-7B-α has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). |
|
It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. |
|
|
|
|
|
## Training and evaluation data |
|
|
|
Zephyr 7B Alpha achieves the following results on the evaluation set: |
|
|
|
- Loss: 0.4605 |
|
- Rewards/chosen: -0.5053 |
|
- Rewards/rejected: -1.8752 |
|
- Rewards/accuracies: 0.7812 |
|
- Rewards/margins: 1.3699 |
|
- Logps/rejected: -327.4286 |
|
- Logps/chosen: -297.1040 |
|
- Logits/rejected: -2.7153 |
|
- Logits/chosen: -2.7447 |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
- learning_rate: 5e-07 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 16 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.5602 | 0.05 | 100 | 0.5589 | -0.3359 | -0.8168 | 0.7188 | 0.4809 | -306.2607 | -293.7161 | -2.6554 | -2.6797 | |
|
| 0.4852 | 0.1 | 200 | 0.5136 | -0.5310 | -1.4994 | 0.8125 | 0.9684 | -319.9124 | -297.6181 | -2.5762 | -2.5957 | |
|
| 0.5212 | 0.15 | 300 | 0.5168 | -0.1686 | -1.1760 | 0.7812 | 1.0074 | -313.4444 | -290.3699 | -2.6865 | -2.7125 | |
|
| 0.5496 | 0.21 | 400 | 0.4835 | -0.1617 | -1.7170 | 0.8281 | 1.5552 | -324.2635 | -290.2326 | -2.7947 | -2.8218 | |
|
| 0.5209 | 0.26 | 500 | 0.5054 | -0.4778 | -1.6604 | 0.7344 | 1.1826 | -323.1325 | -296.5546 | -2.8388 | -2.8667 | |
|
| 0.4617 | 0.31 | 600 | 0.4910 | -0.3738 | -1.5180 | 0.7656 | 1.1442 | -320.2848 | -294.4741 | -2.8234 | -2.8521 | |
|
| 0.4452 | 0.36 | 700 | 0.4838 | -0.4591 | -1.6576 | 0.7031 | 1.1986 | -323.0770 | -296.1796 | -2.7401 | -2.7653 | |
|
| 0.4674 | 0.41 | 800 | 0.5077 | -0.5692 | -1.8659 | 0.7656 | 1.2967 | -327.2416 | -298.3818 | -2.6740 | -2.6945 | |
|
| 0.4656 | 0.46 | 900 | 0.4927 | -0.5279 | -1.6614 | 0.7656 | 1.1335 | -323.1518 | -297.5553 | -2.7817 | -2.8015 | |
|
| 0.4102 | 0.52 | 1000 | 0.4772 | -0.5767 | -2.0667 | 0.7656 | 1.4900 | -331.2578 | -298.5311 | -2.7160 | -2.7455 | |
|
| 0.4663 | 0.57 | 1100 | 0.4740 | -0.8038 | -2.1018 | 0.7656 | 1.2980 | -331.9604 | -303.0741 | -2.6994 | -2.7257 | |
|
| 0.4737 | 0.62 | 1200 | 0.4716 | -0.3783 | -1.7015 | 0.7969 | 1.3232 | -323.9545 | -294.5634 | -2.6842 | -2.7135 | |
|
| 0.4259 | 0.67 | 1300 | 0.4866 | -0.6239 | -1.9703 | 0.7812 | 1.3464 | -329.3312 | -299.4761 | -2.7046 | -2.7356 | |
|
| 0.4935 | 0.72 | 1400 | 0.4747 | -0.5626 | -1.7600 | 0.7812 | 1.1974 | -325.1243 | -298.2491 | -2.7153 | -2.7444 | |
|
| 0.4211 | 0.77 | 1500 | 0.4645 | -0.6099 | -1.9993 | 0.7656 | 1.3894 | -329.9109 | -299.1959 | -2.6944 | -2.7236 | |
|
| 0.4931 | 0.83 | 1600 | 0.4684 | -0.6798 | -2.1082 | 0.7656 | 1.4285 | -332.0890 | -300.5934 | -2.7006 | -2.7305 | |
|
| 0.5029 | 0.88 | 1700 | 0.4595 | -0.5063 | -1.8951 | 0.7812 | 1.3889 | -327.8267 | -297.1233 | -2.7108 | -2.7403 | |
|
| 0.4965 | 0.93 | 1800 | 0.4613 | -0.5561 | -1.9079 | 0.7812 | 1.3518 | -328.0831 | -298.1203 | -2.7226 | -2.7523 | |
|
| 0.4337 | 0.98 | 1900 | 0.4608 | -0.5066 | -1.8718 | 0.7656 | 1.3652 | -327.3599 | -297.1296 | -2.7175 | -2.7469 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.14.0 |
|
|
|
|