|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
MiniChat-1.5-3B - bnb 4bits |
|
- Model creator: https://huggingface.co/GeneZC/ |
|
- Original model: https://huggingface.co/GeneZC/MiniChat-1.5-3B/ |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
language: |
|
- en |
|
- zh |
|
license: apache-2.0 |
|
library_name: transformers |
|
widget: |
|
- text: <s> [|User|] Hi 👋 </s>[|Assistant|] |
|
model-index: |
|
- name: MiniChat-1.5-3B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 46.5 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 68.28 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 46.67 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 50.71 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 65.04 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 24.18 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
## MiniChat-1.5-3B |
|
|
|
📑 [arXiv](https://arxiv.org/abs/2311.07052) | 👻 [GitHub](https://github.com/GeneZC/MiniMA) | 🤗 [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | 🤗 [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | 🤗 [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | 🤖 [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | 🤖 [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B) |
|
|
|
🆕 **Updates from MiniChat-3B**: |
|
- better data mixture; |
|
- use of [NEFTune](https://arxiv.org/abs/2310.05914); |
|
- use of [DPO](https://arxiv.org/abs/2305.18290). |
|
|
|
❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2. |
|
|
|
A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models". |
|
|
|
Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models. |
|
|
|
<img src="./teaser_b.jpg" alt="teaser_b" width="687" /> |
|
|
|
The following is an example code snippet to use MiniChat-3B: |
|
|
|
```python |
|
import torch |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from conversation import get_default_conv_template |
|
|
|
# MiniChat |
|
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False) |
|
# GPU. |
|
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval() |
|
# CPU. |
|
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval() |
|
|
|
conv = get_default_conv_template("minichat") |
|
|
|
question = "Implement a program to find the common elements in two arrays without using any extra data structures." |
|
conv.append_message(conv.roles[0], question) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer([prompt]).input_ids |
|
output_ids = model.generate( |
|
torch.as_tensor(input_ids).cuda(), |
|
do_sample=True, |
|
temperature=0.7, |
|
max_new_tokens=1024, |
|
) |
|
output_ids = output_ids[0][len(input_ids[0]):] |
|
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip() |
|
# output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements" |
|
# Multiturn conversation could be realized by continuously appending questions to `conv`. |
|
``` |
|
|
|
## Bibtex |
|
|
|
```bibtex |
|
@article{zhang2023law, |
|
title={Towards the Law of Capacity Gap in Distilling Language Models}, |
|
author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan}, |
|
year={2023}, |
|
url={https://arxiv.org/abs/2311.07052} |
|
} |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_GeneZC__MiniChat-1.5-3B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |50.23| |
|
|AI2 Reasoning Challenge (25-Shot)|46.50| |
|
|HellaSwag (10-Shot) |68.28| |
|
|MMLU (5-Shot) |46.67| |
|
|TruthfulQA (0-shot) |50.71| |
|
|Winogrande (5-shot) |65.04| |
|
|GSM8k (5-shot) |24.18| |
|
|
|
|
|
|
|
|