YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

WizardCoder-1B-V1.0-dpo-beta-0.01 - AWQ

Original model description:

license: bigcode-openrail-m base_model: WizardLM/WizardCoder-1B-V1.0 tags: - axolotl - dpo - trl - dpo - generated_from_trainer model-index: - name: WizardCoder-1B-V1.0-dpo-beta-0.01 results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: WizardLM/WizardCoder-1B-V1.0
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

hub_model_id: AlekseyKorshuk/WizardCoder-1B-V1.0-dpo-beta-0.01
hub_strategy: every_save

load_in_8bit: false
load_in_4bit: false
strict: false

rl: dpo
datasets:
  - path: AlekseyKorshuk/evol-codealpaca-v1-dpo
    split: train
    type: wizardcoder.intel


dataset_prepared_path:
#val_set_size: 0.001
output_dir: ./output

sequence_len: 2048
#sample_packing: false  # currently unsupported
pad_to_sequence_len:

lora_r:
lora_alpha:
lora_dropout:
lora_target_modules:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: ui-thesis
wandb_entity:
wandb_watch:
wandb_name: ultrachat-stable-code-3b-dpo-chatml-beta-0.01
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
max_grad_norm: 1.0
adam_epsilon: 0.00001
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 8.0e-7
warmup_steps: 32
#warmup_ratio: 0.1
weight_decay: 0.01
dpo_beta: 0.01

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
#float16: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false


#evals_per_epoch: 5
#eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
#eval_table_max_new_tokens: 768 # Total number of tokens generated for predictions sent to wandb. Default is 128

#chat_template: chatml
#saves_per_epoch: 1
save_steps: 500
save_total_limit: 1
seed: 42
debug:
deepspeed:


fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true

WizardCoder-1B-V1.0-dpo-beta-0.01

This model is a fine-tuned version of WizardLM/WizardCoder-1B-V1.0 on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 32
  • training_steps: 312

Training results

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
255M params
Tensor type
I32
·
FP16
·
Inference API
Unable to determine this model's library. Check the docs .