bokesyo's picture
Update README.md
7923606 verified
|
raw
history blame
3.44 kB
---
language:
- en
tags:
- information retrieval
- embedding model
- visual information retrieval
---
# MiniCPM-Visual-Embedding: An OCR-free Visual-Based Document Embedding Model Based on MiniCPM-V-2.0 as Your Personal Librarian
With MiniCPM-Visual-Embedding, it is possible to directly build knowledge base with raw PDF/Book/Document without any OCR technique nor OCR pipeline. The model only takes images as document-side inputs and produce vectors representing document pages.
[Github Repo](https://github.com/bokesyo/minicpm-visual-embedding)
![Memex Archtechture](images/memex.png)
# News
- 2024-06-27: We released our first visual embedding model checkpoint minicpm-visual-embedding-v0 on [huggingface](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0).
- 2024-05-08: We [committed](https://github.com/bokesyo/minicpm-visual-embedding) our training code (full-parameter tuning with GradCache and DeepSpeed, supports large batch size across multiple GPUs with zero-stage1) and eval code.
# Get started
Pip install all dependencies:
```
Pillow==10.1.0
timm==0.9.10
torch==2.1.2
torchvision==0.16.2
transformers==4.36.0
sentencepiece==0.1.99
numpy==1.26.0
```
First you are suggested to git clone this huggingface repo or download repo with `huggingface_cli`.
```bash
git lfs install
git clone https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0
```
or
```bash
huggingface-cli download RhapsodyAI/minicpm-visual-embedding-v0
```
```python
from transformers import AutoModel
from transformers import AutoTokenizer
from PIL import Image
import torch
device = 'cuda:0'
# This function is borrowed from https://huggingface.co/intfloat/e5-mistral-7b-instruct
def last_token_pool(last_hidden_states, attention_mask):
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
# Load model, be sure to substitute `model_path` by your model path
model_path = '/local/path/to/model'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
model.to(device)
# Load image to PIL.Image object
image_1 = Image.open('/local/path/to/images/memex.png').convert('RGB')
image_2 = Image.open('/local/path/to/images/us2020.png').convert('RGB')
image_3 = Image.open('/local/path/to/images/hard_negative.png').convert('RGB')
# User query
query_instruction = 'Represent this query for retrieving relavant document: '
query = 'Who was elected as president of United States in 2020?'
query_full = query_instruction + query
# Embed image documents
with torch.no_grad():
p_outputs = model(text=['', '', ''], image=[image_1, image_2, image_3], tokenizer=tokenizer)
p_reps = last_token_pool(p_outputs.last_hidden_state, p_outputs.attention_mask)
# Embed text queries
with torch.no_grad():
q_outputs = model(text=[query_full], image=[None], tokenizer=tokenizer) # [B, s, d]
q_reps = last_token_pool(q_outputs.last_hidden_state, q_outputs.attention_mask) # [B, d]
# Calculate similarities
scores = torch.matmul(q_reps, p_reps.T)
print(scores)
# tensor([[0.6506, 4.9630, 3.8614]], device='cuda:0')
```