t5_small_autotagging

This model is a fine-tuned version of RevoltronTechno/t5_small_context_tagging on the autotagging dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5257

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
0.6798 1.0 1250 0.6040
0.6228 2.0 2500 0.5913
0.6253 3.0 3750 0.5829
0.6079 4.0 5000 0.5746
0.5902 5.0 6250 0.5688
0.5815 6.0 7500 0.5616
0.5669 7.0 8750 0.5576
0.5629 8.0 10000 0.5522
0.5798 9.0 11250 0.5500
0.5639 10.0 12500 0.5462
0.5458 11.0 13750 0.5428
0.5427 12.0 15000 0.5421
0.5198 13.0 16250 0.5399
0.5077 14.0 17500 0.5381
0.5267 15.0 18750 0.5366
0.4932 16.0 20000 0.5354
0.5046 17.0 21250 0.5342
0.5011 18.0 22500 0.5340
0.5029 19.0 23750 0.5325
0.4876 20.0 25000 0.5305
0.4926 21.0 26250 0.5289
0.4817 22.0 27500 0.5289
0.488 23.0 28750 0.5280
0.5012 24.0 30000 0.5283
0.4789 25.0 31250 0.5269
0.4913 26.0 32500 0.5275
0.4587 27.0 33750 0.5272
0.4718 28.0 35000 0.5266
0.4698 29.0 36250 0.5260
0.4873 30.0 37500 0.5256
0.4439 31.0 38750 0.5269
0.4794 32.0 40000 0.5263
0.4538 33.0 41250 0.5270
0.4613 34.0 42500 0.5250
0.4622 35.0 43750 0.5257
0.4567 36.0 45000 0.5257
0.4589 37.0 46250 0.5250
0.4508 38.0 47500 0.5252
0.4562 39.0 48750 0.5251
0.4405 40.0 50000 0.5257
0.4367 41.0 51250 0.5261
0.4407 42.0 52500 0.5256
0.4647 43.0 53750 0.5254
0.444 44.0 55000 0.5249
0.4582 45.0 56250 0.5254
0.4523 46.0 57500 0.5258
0.4435 47.0 58750 0.5255
0.4547 48.0 60000 0.5259
0.447 49.0 61250 0.5257
0.4272 50.0 62500 0.5257

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3

Evaluation Metrics

The model was evaluated using the following metrics:

Metric Value Percentage
ROUGE-1 0.513954 51.40%
ROUGE-2 0.251370 25.14%
ROUGE-L 0.465847 46.58%
BLEU Score 0.180733 18.07%

Metric Descriptions:

  • ROUGE-1: Measures the overlap of unigrams between the generated text and reference text.
  • ROUGE-2: Measures the overlap of bigrams between the generated text and reference text.
  • ROUGE-L: Measures the longest common subsequence between the generated text and reference text.
  • BLEU Score: Measures the precision of n-grams in the generated text compared to the reference text.
Downloads last month
56
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for RevoltronTechno/t5_small_autotagging

Finetuned
(1)
this model