t5_small_autotagging
This model is a fine-tuned version of RevoltronTechno/t5_small_context_tagging on the autotagging dataset. It achieves the following results on the evaluation set:
- Loss: 0.5257
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6798 | 1.0 | 1250 | 0.6040 |
0.6228 | 2.0 | 2500 | 0.5913 |
0.6253 | 3.0 | 3750 | 0.5829 |
0.6079 | 4.0 | 5000 | 0.5746 |
0.5902 | 5.0 | 6250 | 0.5688 |
0.5815 | 6.0 | 7500 | 0.5616 |
0.5669 | 7.0 | 8750 | 0.5576 |
0.5629 | 8.0 | 10000 | 0.5522 |
0.5798 | 9.0 | 11250 | 0.5500 |
0.5639 | 10.0 | 12500 | 0.5462 |
0.5458 | 11.0 | 13750 | 0.5428 |
0.5427 | 12.0 | 15000 | 0.5421 |
0.5198 | 13.0 | 16250 | 0.5399 |
0.5077 | 14.0 | 17500 | 0.5381 |
0.5267 | 15.0 | 18750 | 0.5366 |
0.4932 | 16.0 | 20000 | 0.5354 |
0.5046 | 17.0 | 21250 | 0.5342 |
0.5011 | 18.0 | 22500 | 0.5340 |
0.5029 | 19.0 | 23750 | 0.5325 |
0.4876 | 20.0 | 25000 | 0.5305 |
0.4926 | 21.0 | 26250 | 0.5289 |
0.4817 | 22.0 | 27500 | 0.5289 |
0.488 | 23.0 | 28750 | 0.5280 |
0.5012 | 24.0 | 30000 | 0.5283 |
0.4789 | 25.0 | 31250 | 0.5269 |
0.4913 | 26.0 | 32500 | 0.5275 |
0.4587 | 27.0 | 33750 | 0.5272 |
0.4718 | 28.0 | 35000 | 0.5266 |
0.4698 | 29.0 | 36250 | 0.5260 |
0.4873 | 30.0 | 37500 | 0.5256 |
0.4439 | 31.0 | 38750 | 0.5269 |
0.4794 | 32.0 | 40000 | 0.5263 |
0.4538 | 33.0 | 41250 | 0.5270 |
0.4613 | 34.0 | 42500 | 0.5250 |
0.4622 | 35.0 | 43750 | 0.5257 |
0.4567 | 36.0 | 45000 | 0.5257 |
0.4589 | 37.0 | 46250 | 0.5250 |
0.4508 | 38.0 | 47500 | 0.5252 |
0.4562 | 39.0 | 48750 | 0.5251 |
0.4405 | 40.0 | 50000 | 0.5257 |
0.4367 | 41.0 | 51250 | 0.5261 |
0.4407 | 42.0 | 52500 | 0.5256 |
0.4647 | 43.0 | 53750 | 0.5254 |
0.444 | 44.0 | 55000 | 0.5249 |
0.4582 | 45.0 | 56250 | 0.5254 |
0.4523 | 46.0 | 57500 | 0.5258 |
0.4435 | 47.0 | 58750 | 0.5255 |
0.4547 | 48.0 | 60000 | 0.5259 |
0.447 | 49.0 | 61250 | 0.5257 |
0.4272 | 50.0 | 62500 | 0.5257 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
Evaluation Metrics
The model was evaluated using the following metrics:
Metric | Value | Percentage |
---|---|---|
ROUGE-1 | 0.513954 | 51.40% |
ROUGE-2 | 0.251370 | 25.14% |
ROUGE-L | 0.465847 | 46.58% |
BLEU Score | 0.180733 | 18.07% |
Metric Descriptions:
- ROUGE-1: Measures the overlap of unigrams between the generated text and reference text.
- ROUGE-2: Measures the overlap of bigrams between the generated text and reference text.
- ROUGE-L: Measures the longest common subsequence between the generated text and reference text.
- BLEU Score: Measures the precision of n-grams in the generated text compared to the reference text.
- Downloads last month
- 56
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for RevoltronTechno/t5_small_autotagging
Base model
RevoltronTechno/t5_small_autotagging_base_v1