File size: 3,308 Bytes
d466275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:

        - text: 'in the style of <s0><s1>'
        
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: in the style of <s0><s1>
license: openrail++
---

# SDXL LoRA DreamBooth - Resleeve/66e2c4b6c0fa33b7c6cca7b5
<Gallery />
## Model description
### These are Resleeve/66e2c4b6c0fa33b7c6cca7b5 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`./artifacts/weights.safetensors` here 💾](/Resleeve/66e2c4b6c0fa33b7c6cca7b5/blob/main/./artifacts/weights.safetensors)**.
    - Place it on your `models/Lora` folder.
    - On AUTOMATIC1111, load the LoRA by adding `<lora:./artifacts/weights:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`pytorch_lora_weights_emb.safetensors` here 💾](/Resleeve/66e2c4b6c0fa33b7c6cca7b5/blob/main/pytorch_lora_weights_emb.safetensors)**.
    - Place it on it on your `embeddings` folder
    - Use it by adding `pytorch_lora_weights_emb` to your prompt. For example, `in the style of pytorch_lora_weights_emb`
    (you need both the LoRA and the embeddings as they were trained together for this LoRA)
    
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Resleeve/66e2c4b6c0fa33b7c6cca7b5', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='Resleeve/66e2c4b6c0fa33b7c6cca7b5', filename='pytorch_lora_weights_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('in the style of <s0><s1>').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept `TOK` → use `<s0><s1>` in your prompt 


## Details
All [Files & versions](/Resleeve/66e2c4b6c0fa33b7c6cca7b5/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.