SDXL LoRA DreamBooth - Resleeve/66e2c4b6c0fa33b7c6cca7b5
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Resleeve/66e2c4b6c0fa33b7c6cca7b5', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='Resleeve/66e2c4b6c0fa33b7c6cca7b5', filename='pytorch_lora_weights_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('in the style of <s0><s1>').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept TOK
→ use <s0><s1>
in your prompt
Details
All Files & versions. The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script. LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
- Downloads last month
- 18
Model tree for Resleeve/66e2c4b6c0fa33b7c6cca7b5
Base model
stabilityai/stable-diffusion-xl-base-1.0