Illumina-NoobVpd
Civitai model page: https://civitai.com/models/916947
Fine-tuned NoobAI-XL(v-prediction) and merged SPO
NoobAI-XL(v-prediction)をファインチューンし、SPOをマージしました。
日本語での導入手順はページ下部にあります。
Requirements / 動作要件
- AUTOMATIC1111 WebUI on
dev
branch / devブランチ上のAUTOMATIC1111 WebUI - Latest version of ComfyUI / 最新版のComfyUI
- ReForge on
dev_upstream_experimental
branch /dev_upstream_experimental
ブランチ上のreForge
Instruction for AUTOMATIC1111
- Download the model
- Switch branch to
dev
- Copy
configs/sd_xl_v.yaml
tomodels/Stable-Diffusion/
- Rename it to the same as the model name
Instruction for ReForge
- Download the model
- Switch branch to
dev_upstream_experimental
- Find “Advanced Model Sampling for Forge” at the bottom of the page
- Enable “Enable Advanced Model Sampling”
- Select
v_prediction
in Discrete Sampling Type
Example Workflow for ComfyUI / ComfyUIサンプルワークフロー
Download it from here
Prompt Guidelines / プロンプト記法
Almost same as the base model/ベースモデルとおおむね同じ
To improve the quality of background, add simple background, transparent background
to Negative Prompt.
Recommended Prompt / 推奨プロンプト
Positive: None/無し(Works good without masterpiece, best quality
/ masterpiece, best quality
無しでおk)
Negative: worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, oldest, old, photoshop \(medium\), abstract
Tips: Leaving Negative Prompt empty will increase the diversity of styles(less 'masterpiece').
ヒント: ネガティブプロンプトを空にしておくと画風の多様性が高くなります(マスピ感を軽減)
Recommended Settings / 推奨設定
Steps: 14-28
Sampler: DPM++ 2M(dpmpp_2m)
Scheduler: Simple
Guidance Scale: 4-9
Hires.fix
Hires upscaler: 4x-UltraSharp or Latent(nearest-exact)
Denoising strength: 0.4-0.5(0.6 for latent)
Merge recipe(Weighted sum)
I made 6 Illustrious-based models and merged them.
Stage 0: finetunes v-pred test model with AI-generated images
Stage 1: finetunes stage 0 model with 300 scenery images from Gelbooru
Stage 2: Finetune and merge(see below)
*A-F,sd15: finetuned stage1(ReLoRA)
- A * 0.6 + B * 0.4 = tmp1
- tmp1 * 0.6 + C * 0.4 = tmp2
- tmp2 * 0.7 + F * 0.3 = tmp3
- tmp3 * 0.7 + E * 0.3 = tmp4
- tmp4 * 0.5 + D * 0.5 = tmp5
- tmp5 * 0.65 + sd15 * 0.35 = tmp6
- tmp6 + SPO LoRA = Result
Training scripts:
Notice
This model is licensed under Fair AI Public License 1.0-SD
If you make modify this model, you must share both your changes and the original license.
You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.
AUTOMATIC1111の導入手順
- devブランチに切り替える(ブランチの切り替えかたは各自調べてください)。
- モデルをダウンロードする。
configs/sd_xl_v.yaml
をmodels/Stable-Diffusion/
にコピーする- コピペしたファイルをモデル名と同名にする
ReForgeの導入手順
dev_upstream_experimental
ブランチに切り替える- モデルをダウンロードする。
- WebUIのページ下部から“Advanced Model Sampling for Forge”を見つける
- “Enable Advanced Model Sampling”を有効にする
- Discrete Sampling Typeを
v_prediction
にする