lilt-en-funsd / README.md
RedRawMeat's picture
End of training
f7b1cba verified
|
raw
history blame
7.89 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7648
  • Answer: {'precision': 0.8672150411280846, 'recall': 0.9033047735618115, 'f1': 0.8848920863309352, 'number': 817}
  • Header: {'precision': 0.6666666666666666, 'recall': 0.48739495798319327, 'f1': 0.5631067961165048, 'number': 119}
  • Question: {'precision': 0.9055912007332723, 'recall': 0.9173630454967502, 'f1': 0.911439114391144, 'number': 1077}
  • Overall Precision: 0.8793
  • Overall Recall: 0.8862
  • Overall F1: 0.8827
  • Overall Accuracy: 0.8009

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.437 10.53 200 0.9767 {'precision': 0.8161180476730987, 'recall': 0.8800489596083231, 'f1': 0.8468786808009423, 'number': 817} {'precision': 0.4875, 'recall': 0.3277310924369748, 'f1': 0.39195979899497485, 'number': 119} {'precision': 0.8519480519480519, 'recall': 0.9136490250696379, 'f1': 0.8817204301075269, 'number': 1077} 0.8233 0.8654 0.8438 0.7825
0.0411 21.05 400 1.3412 {'precision': 0.8213507625272332, 'recall': 0.9228886168910648, 'f1': 0.869164265129683, 'number': 817} {'precision': 0.48936170212765956, 'recall': 0.5798319327731093, 'f1': 0.5307692307692307, 'number': 119} {'precision': 0.9178217821782179, 'recall': 0.8607242339832869, 'f1': 0.8883564925730715, 'number': 1077} 0.8458 0.8693 0.8574 0.8058
0.013 31.58 600 1.3818 {'precision': 0.8340807174887892, 'recall': 0.9106487148102815, 'f1': 0.8706846108835576, 'number': 817} {'precision': 0.5595238095238095, 'recall': 0.3949579831932773, 'f1': 0.4630541871921182, 'number': 119} {'precision': 0.8754355400696864, 'recall': 0.9331476323119777, 'f1': 0.903370786516854, 'number': 1077} 0.8456 0.8922 0.8683 0.8002
0.0079 42.11 800 1.5417 {'precision': 0.8312849162011173, 'recall': 0.9106487148102815, 'f1': 0.869158878504673, 'number': 817} {'precision': 0.5789473684210527, 'recall': 0.5546218487394958, 'f1': 0.5665236051502146, 'number': 119} {'precision': 0.883441258094357, 'recall': 0.8867223769730733, 'f1': 0.8850787766450416, 'number': 1077} 0.8445 0.8768 0.8603 0.7787
0.0042 52.63 1000 1.7697 {'precision': 0.8411111111111111, 'recall': 0.9265605875152999, 'f1': 0.881770529994176, 'number': 817} {'precision': 0.6363636363636364, 'recall': 0.35294117647058826, 'f1': 0.4540540540540541, 'number': 119} {'precision': 0.8674176776429809, 'recall': 0.9294336118848654, 'f1': 0.897355445988346, 'number': 1077} 0.8491 0.8942 0.8710 0.7868
0.0025 63.16 1200 1.6700 {'precision': 0.8520231213872832, 'recall': 0.9020807833537332, 'f1': 0.8763376932223542, 'number': 817} {'precision': 0.5434782608695652, 'recall': 0.42016806722689076, 'f1': 0.4739336492890995, 'number': 119} {'precision': 0.8812330009066183, 'recall': 0.9025069637883009, 'f1': 0.891743119266055, 'number': 1077} 0.8539 0.8738 0.8637 0.7795
0.0013 73.68 1400 1.8217 {'precision': 0.8444193912063134, 'recall': 0.9167686658506732, 'f1': 0.8791079812206573, 'number': 817} {'precision': 0.5813953488372093, 'recall': 0.42016806722689076, 'f1': 0.48780487804878053, 'number': 119} {'precision': 0.8940639269406393, 'recall': 0.9090064995357474, 'f1': 0.9014732965009209, 'number': 1077} 0.8598 0.8833 0.8714 0.7878
0.0007 84.21 1600 1.7507 {'precision': 0.8437146092865232, 'recall': 0.9118727050183598, 'f1': 0.8764705882352941, 'number': 817} {'precision': 0.6794871794871795, 'recall': 0.44537815126050423, 'f1': 0.5380710659898478, 'number': 119} {'precision': 0.8888888888888888, 'recall': 0.9210770659238626, 'f1': 0.9046967624259006, 'number': 1077} 0.8618 0.8892 0.8753 0.7901
0.0006 94.74 1800 1.7257 {'precision': 0.8539976825028969, 'recall': 0.9020807833537332, 'f1': 0.8773809523809523, 'number': 817} {'precision': 0.6344086021505376, 'recall': 0.4957983193277311, 'f1': 0.5566037735849056, 'number': 119} {'precision': 0.8943014705882353, 'recall': 0.903435468895079, 'f1': 0.8988452655889145, 'number': 1077} 0.8655 0.8788 0.8721 0.7922
0.0004 105.26 2000 1.7648 {'precision': 0.8672150411280846, 'recall': 0.9033047735618115, 'f1': 0.8848920863309352, 'number': 817} {'precision': 0.6666666666666666, 'recall': 0.48739495798319327, 'f1': 0.5631067961165048, 'number': 119} {'precision': 0.9055912007332723, 'recall': 0.9173630454967502, 'f1': 0.911439114391144, 'number': 1077} 0.8793 0.8862 0.8827 0.8009
0.0003 115.79 2200 1.7698 {'precision': 0.8616279069767442, 'recall': 0.9069767441860465, 'f1': 0.8837209302325582, 'number': 817} {'precision': 0.6373626373626373, 'recall': 0.48739495798319327, 'f1': 0.5523809523809524, 'number': 119} {'precision': 0.9104339796860572, 'recall': 0.9155060352831941, 'f1': 0.9129629629629629, 'number': 1077} 0.8776 0.8867 0.8821 0.8007
0.0003 126.32 2400 1.7623 {'precision': 0.8596287703016241, 'recall': 0.9069767441860465, 'f1': 0.882668254913639, 'number': 817} {'precision': 0.5769230769230769, 'recall': 0.5042016806722689, 'f1': 0.5381165919282511, 'number': 119} {'precision': 0.9018348623853211, 'recall': 0.9127205199628597, 'f1': 0.9072450392247347, 'number': 1077} 0.8677 0.8862 0.8769 0.7973

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0