David
Update README.md
5ab7397
|
raw
history blame
3.41 kB
metadata
language: es
tags:
  - zero-shot-classification
  - nli
  - pytorch
datasets:
  - xnli
pipeline_tag: zero-shot-classification
license: apache-2.0
widget:
  - text: >-
      El autor se perfila, a los 50 años de su muerte, como uno de los grandes
      de su siglo
    candidate_labels: cultura, sociedad, economia, salud, deportes

Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA

Zero-shot SELECTRA is a SELECTRA model fine-tuned on the Spanish portion of the XNLI dataset. You can use it with Hugging Face's Zero-shot pipeline to make zero-shot classifications.

In comparison to our previous zero-shot classifier based on BETO, zero-shot SELECTRA is much more lightweight. As shown in the Metrics section, the small version (5 times fewer parameters) performs slightly worse, while the medium version (3 times fewer parameters) outperforms the BETO based zero-shot classifier.

Usage

from transformers import pipeline
classifier = pipeline("zero-shot-classification", 
                       model="Recognai/zeroshot_selectra_medium")

classifier(
    "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo",
    candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"],
    hypothesis_template="Este ejemplo es {}."
)
"""Output
{'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo',
 'labels': ['sociedad', 'cultura', 'salud', 'economia', 'deportes'],
 'scores': [0.3711881935596466,
  0.25650349259376526,
  0.17355826497077942,
  0.1641489565372467,
  0.03460107371211052]}
"""

The hypothesis_template parameter is important and should be in Spanish. In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.

Metrics

Model Params XNLI (acc) *MLSUM (acc)
zs BETO 110M 0.799 0.530
zs SELECTRA medium 41M 0.807 0.589
zs SELECTRA small 22M 0.795 0.446

*evaluated with zero-shot learning (ZSL)

  • XNLI: The stated accuracy refers to the test portion of the XNLI dataset, after finetuning the model on the training portion.
  • MLSUM: For this accuracy we take the test set of the MLSUM dataset and classify the summaries of 5 selected labels. For details, check out our evaluation notebook

Training

Check out our training notebook for all the details.

Authors