TAC RGB encoder
This model is used for encoding RGB image into a dense feature.
Caution, the model does not contain the last FC layer. So, the output features are not aligned with depth.
Model Details
Model Description
The model is pre-trained with RGB-D contrastive objectives, named TAC. Different from InfoNCE-based loss fuctions, TAC leverages the similarity between videos frames and estimate a similarity matrix as soft labels. The backbone of this version is ViT-B/32. The pre-training is conducted on a new unified RGB-D database, UniRGBD. The main purpose of this work is depth representation. So, the RGB encoder is just a side model.
Model Sources
- Repository: TAC
- Paper: Learning Depth Representation from RGB-D Videos by Time-Aware Contrastive Pre-training
Citation
@ARTICLE{10288539,
author={He, Zongtao and Wang, Liuyi and Dang, Ronghao and Li, Shu and Yan, Qingqing and Liu, Chengju and Chen, Qijun},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
title={Learning Depth Representation From RGB-D Videos by Time-Aware Contrastive Pre-Training},
year={2024},
volume={34},
number={6},
pages={4143-4158},
doi={10.1109/TCSVT.2023.3326373}}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.