Bert-Sentiment-Fa / README.md
Rasooli's picture
Sentiment Fa
9f8384e verified
|
raw
history blame
2.47 kB
metadata
library_name: transformers
license: apache-2.0
base_model: HooshvareLab/bert-fa-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: Bert-Sentiment-Fa
    results: []

Bert-Sentiment-Fa

This model is a fine-tuned version of HooshvareLab/bert-fa-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1790
  • Accuracy: 0.8167
  • F1: 0.8174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 68 0.6093 0.7583 0.7592
No log 2.0 136 0.5057 0.8125 0.8093
No log 3.0 204 0.5610 0.8125 0.8172
No log 4.0 272 0.7870 0.7958 0.7862
No log 5.0 340 0.8404 0.8042 0.8105
No log 6.0 408 0.8729 0.8208 0.8256
No log 7.0 476 0.9832 0.8292 0.8322
0.1891 8.0 544 1.0597 0.825 0.8288
0.1891 9.0 612 1.1262 0.8208 0.8184
0.1891 10.0 680 1.1224 0.8208 0.8260
0.1891 11.0 748 1.1524 0.8167 0.8188
0.1891 12.0 816 1.1460 0.8042 0.8055
0.1891 13.0 884 1.1633 0.8167 0.8202
0.1891 14.0 952 1.1620 0.8167 0.8177
0.0077 15.0 1020 1.1790 0.8167 0.8174

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1