whisper-small-vt / README.md
Rashmi21's picture
End of training
152aa48 verified
---
language:
- dv
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- vtdataset
metrics:
- wer
model-index:
- name: Whisper Small vd - Rashmi Shinde
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: videos data
type: vtdataset
metrics:
- name: Wer
type: wer
value: 11.392999765092789
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small vd - Rashmi Shinde
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the videos data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5692
- Wer Ortho: 14.7630
- Wer: 11.3930
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.0002 | 50.0 | 500 | 0.5692 | 14.7630 | 11.3930 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1