Edit model card

SentimentClassifier.si

This model is a fine-tuned version of Ransaka/sinhala-bert-medium-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2358
  • F1: 0.8877

Intended uses & limitations

More information needed

Training and evaluation data

Labels

  NEGATIVE: 1
  POSITIVE: 0

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss F1
0.4053 0.08 100 0.2802 0.8677
0.3768 0.16 200 0.3123 0.8616
0.3334 0.24 300 0.2810 0.8732
0.2906 0.32 400 0.2554 0.8779
0.3027 0.4 500 0.2595 0.8836
0.2612 0.48 600 0.2797 0.8592
0.2568 0.56 700 0.2474 0.8785
0.2325 0.64 800 0.2546 0.8816
0.2272 0.72 900 0.2424 0.8878
0.2331 0.8 1000 0.2358 0.8877

Model performance on validation dataset

              precision    recall  f1-score   support

           0       0.95      0.92      0.93      6943
           1       0.82      0.88      0.84      2913

    accuracy                           0.90      9856
   macro avg       0.88      0.90      0.89      9856
weighted avg       0.91      0.90      0.91      9856

Confusion Matrix on Validation Data

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
11
Safetensors
Model size
50.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Ransaka/SentimentClassifier.si

Finetuned
(2)
this model