SentimentClassifier.si
This model is a fine-tuned version of Ransaka/sinhala-bert-medium-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2358
- F1: 0.8877
Intended uses & limitations
More information needed
Training and evaluation data
Labels
NEGATIVE: 1
POSITIVE: 0
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.4053 | 0.08 | 100 | 0.2802 | 0.8677 |
0.3768 | 0.16 | 200 | 0.3123 | 0.8616 |
0.3334 | 0.24 | 300 | 0.2810 | 0.8732 |
0.2906 | 0.32 | 400 | 0.2554 | 0.8779 |
0.3027 | 0.4 | 500 | 0.2595 | 0.8836 |
0.2612 | 0.48 | 600 | 0.2797 | 0.8592 |
0.2568 | 0.56 | 700 | 0.2474 | 0.8785 |
0.2325 | 0.64 | 800 | 0.2546 | 0.8816 |
0.2272 | 0.72 | 900 | 0.2424 | 0.8878 |
0.2331 | 0.8 | 1000 | 0.2358 | 0.8877 |
Model performance on validation dataset
precision recall f1-score support
0 0.95 0.92 0.93 6943
1 0.82 0.88 0.84 2913
accuracy 0.90 9856
macro avg 0.88 0.90 0.89 9856
weighted avg 0.91 0.90 0.91 9856
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Ransaka/SentimentClassifier.si
Base model
Ransaka/sinhala-bert-medium-v2