|
--- |
|
base_model: xxxxxxxxx |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- AmazonScience/massive |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: massive_indo |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# massive_indo |
|
|
|
This model is a fine-tuned version of [xxxxxxxxx](https://huggingface.co/xxxxxxxxx) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5941 |
|
- F1: 0.2075 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:------:|:---------------:|:------:| |
|
| 1.6114 | 0.18 | 4000 | 2.8696 | 0.0216 | |
|
| 1.175 | 0.37 | 8000 | 2.4185 | 0.0298 | |
|
| 1.0297 | 0.55 | 12000 | 2.2393 | 0.0265 | |
|
| 0.9481 | 0.74 | 16000 | 2.0412 | 0.0359 | |
|
| 0.907 | 0.92 | 20000 | 1.9175 | 0.0369 | |
|
| 0.8091 | 1.11 | 24000 | 1.7551 | 0.0542 | |
|
| 0.7541 | 1.29 | 28000 | 1.6911 | 0.0638 | |
|
| 0.7476 | 1.48 | 32000 | 1.5999 | 0.0736 | |
|
| 0.6812 | 1.66 | 36000 | 1.5595 | 0.0887 | |
|
| 0.6615 | 1.85 | 40000 | 1.4151 | 0.1002 | |
|
| 0.5681 | 2.03 | 44000 | 1.3710 | 0.1013 | |
|
| 0.5088 | 2.22 | 48000 | 1.2370 | 0.1176 | |
|
| 0.5355 | 2.4 | 52000 | 1.1219 | 0.1327 | |
|
| 0.4965 | 2.59 | 56000 | 1.1772 | 0.1381 | |
|
| 0.4671 | 2.77 | 60000 | 1.0597 | 0.1549 | |
|
| 0.4902 | 2.95 | 64000 | 1.0120 | 0.1549 | |
|
| 0.4143 | 3.14 | 68000 | 0.8947 | 0.1836 | |
|
| 0.3805 | 3.32 | 72000 | 0.8788 | 0.1731 | |
|
| 0.3766 | 3.51 | 76000 | 0.8115 | 0.1762 | |
|
| 0.3691 | 3.69 | 80000 | 0.8016 | 0.1800 | |
|
| 0.3698 | 3.88 | 84000 | 0.7637 | 0.1857 | |
|
| 0.3368 | 4.06 | 88000 | 0.7051 | 0.1933 | |
|
| 0.3267 | 4.25 | 92000 | 0.6571 | 0.1969 | |
|
| 0.34 | 4.43 | 96000 | 0.6427 | 0.1980 | |
|
| 0.2947 | 4.62 | 100000 | 0.6451 | 0.2029 | |
|
| 0.3118 | 4.8 | 104000 | 0.6006 | 0.2018 | |
|
| 0.2873 | 4.99 | 108000 | 0.5941 | 0.2075 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.14.0 |
|
|