metadata
license: llama3
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- Text Generation
- Transformers
- llama
- llama-3
- 8B
- nvidia
- facebook
- meta
- LLM
- fine-tuned
- insurance
- research
- pytorch
- instruct
- chatqa-1.5
- chatqa
- finetune
- gpt4
- conversational
- text-generation-inference
- Inference Endpoints
datasets:
- InsuranceQA
base_model: nvidia/Llama3-ChatQA-1.5-8B
finetuned: Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B
quantized: Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF
Open-Insurance-LLM-Llama3-8B-GGUF
This model is a GGUF-quantized version of an insurance domain-specific language model based on Nvidia Llama 3-ChatQA Fine-tuned for insurance-related queries and conversations.
Model Details
- Model Type: Quantized Language Model (GGUF format)
- Base Model: nvidia/Llama3-ChatQA-1.5-8B
- Finetuned Model: Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B
- Quantized Model: Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF
- Model Architecture: Llama
- Quantization: 8-bit (Q8_0), 5-bit (Q5_K_M), 4-bit (Q4_K_M), 16-bit
- Finetuned Dataset: InsuranceQA
- Developer: Raj Maharajwala
- License: llama3
- Language: English
Setup Instructions
Environment Setup
For Windows
python3 -m venv .venv_open_insurance_llm
.\.venv_open_insurance_llm\Scripts\activate
For Mac/Linux
python3 -m venv .venv_open_insurance_llm
source .venv_open_insurance_llm/bin/activate
Installation
For Mac Users (Metal Support)
export FORCE_CMAKE=1
CMAKE_ARGS="-DGGML_METAL=on" pip install --upgrade --force-reinstall llama-cpp-python==0.3.2 --no-cache-dir
For Windows Users (CPU Support)
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
Dependencies
Then install dependencies (inference_requirements.txt) attached under Files and Versions
:
pip install -r inference_requirements.txt
Inference Loop
# Attached under `Files and Versions` (inference_open-insurance-llm-gguf.py)
import os
import time
import logging
import sys
import psutil
import datetime
import traceback
import multiprocessing
from pathlib import Path
from llama_cpp import Llama
from typing import Optional, Dict, Any
from dataclasses import dataclass
from rich.console import Console
from rich.logging import RichHandler
from contextlib import contextmanager
from rich.traceback import install
from rich.theme import Theme
from huggingface_hub import hf_hub_download
# from rich.progress import Progress, SpinnerColumn, TimeElapsedColumn
# Install rich traceback handler
install(show_locals=True)
@dataclass
class ModelConfig:
# Optimized parameters for coherent responses and efficient performance on devices like MacBook Air M2
model_name: str = "Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF"
model_file: str = "open-insurance-llm-q4_k_m.gguf"
# model_file: str = "open-insurance-llm-q8_0.gguf" # 8-bit quantization; higher precision, better quality, increased resource usage
# model_file: str = "open-insurance-llm-q5_k_m.gguf" # 5-bit quantization; balance between performance and resource efficiency
max_tokens: int = 1000 # Maximum number of tokens to generate in a single output
temperature: float = 0.1 # Controls randomness in output; lower values produce more coherent responses (performs scaling distribution)
top_k: int = 15 # After temperature scaling, Consider the top 15 most probable tokens during sampling
top_p: float = 0.2 # After reducing the set to 15 tokens, Uses nucleus sampling to select tokens with a cumulative probability of 20%
repeat_penalty: float = 1.2 # Penalize repeated tokens to reduce redundancy
num_beams: int = 4 # Number of beams for beam search; higher values improve quality at the cost of speed
n_gpu_layers: int = -2 # Number of layers to offload to GPU; -1 for full GPU utilization, -2 for automatic configuration
n_ctx: int = 2048 # Context window size; Llama 3 models support up to 8192 tokens context length
n_batch: int = 256 # Number of tokens to process simultaneously; adjust based on available hardware (suggested 512)
verbose: bool = False # True for enabling verbose logging for debugging purposes
use_mmap: bool = False # Memory-map model to reduce RAM usage; set to True if running on limited memory systems
use_mlock: bool = True # Lock model into RAM to prevent swapping; improves performance on systems with sufficient RAM
offload_kqv: bool = True # Offload key, query, value matrices to GPU to accelerate inference
class CustomFormatter(logging.Formatter):
"""Enhanced formatter with detailed context for different log levels"""
FORMATS = {
logging.DEBUG: "🔍 %(asctime)s - %(name)s - [%(filename)s:%(lineno)d] - %(levelname)s - %(message)s",
logging.INFO: "ℹ️ %(asctime)s - %(name)s - [%(funcName)s] - %(levelname)s - %(message)s",
logging.WARNING: "⚠️ %(asctime)s - %(name)s - [%(funcName)s] - %(levelname)s - %(message)s\nContext: %(pathname)s",
logging.ERROR: "❌ %(asctime)s - %(name)s - [%(funcName)s:%(lineno)d] - %(levelname)s - %(message)s",
logging.CRITICAL: """🚨 %(asctime)s - %(name)s - %(levelname)s
Location: %(pathname)s:%(lineno)d
Function: %(funcName)s
Process: %(process)d
Thread: %(thread)d
Message: %(message)s
Memory: %(memory).2fMB
"""
}
def format(self, record):
# Add memory usage information
if not hasattr(record, 'memory'):
record.memory = psutil.Process().memory_info().rss / (1024 * 1024)
log_fmt = self.FORMATS.get(record.levelno)
formatter = logging.Formatter(log_fmt, datefmt='%Y-%m-%d %H:%M:%S')
# Add performance metrics if available
if hasattr(record, 'duration'):
record.message = f"{record.message}\nDuration: {record.duration:.2f}s"
return formatter.format(record)
def setup_logging(log_dir: str = "logs") -> logging.Logger:
"""Enhanced logging setup with multiple handlers and log files"""
Path(log_dir).mkdir(exist_ok=True)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
log_path = (Path(log_dir) / f"l_{timestamp}")
log_path.mkdir(exist_ok=True)
logger = logging.getLogger("InsuranceLLM")
# Clear any existing handlers
logger.handlers.clear()
logger.setLevel(logging.DEBUG)
# Create handlers with level-specific files
handlers = {
'debug': (logging.FileHandler(log_path / f"debug_{timestamp}.log"), logging.DEBUG),
'info': (logging.FileHandler(log_path / f"info_{timestamp}.log"), logging.INFO),
'error': (logging.FileHandler(log_path / f"error_{timestamp}.log"), logging.ERROR),
'critical': (logging.FileHandler(log_path / f"critical_{timestamp}.log"), logging.CRITICAL),
'console': (RichHandler(
console=Console(theme=custom_theme),
show_time=True,
show_path=False,
enable_link_path=True
), logging.INFO)
}
formatter = CustomFormatter()
for (handler, level) in handlers.values():
handler.setLevel(level)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info(f"Starting new session {timestamp}")
logger.info(f"Log directory: {log_dir}")
return logger
# Custom theme configuration
custom_theme = Theme({"info": "bold cyan","warning": "bold yellow", "error": "bold red","critical": "bold white on red","success": "bold green","timestamp": "bold magenta","metrics": "bold blue","memory": "bold yellow","performance": "bold cyan",})
console = Console(theme=custom_theme)
class PerformanceMetrics:
def __init__(self):
self.start_time = time.time()
self.tokens = 0
self.response_times = []
self.last_reset = self.start_time
def reset_timer(self):
"""Reset the timer for individual response measurements"""
self.last_reset = time.time()
def update(self, tokens: int):
self.tokens += tokens
response_time = time.time() - self.last_reset
self.response_times.append(response_time)
@property
def elapsed_time(self) -> float:
return time.time() - self.start_time
@property
def last_response_time(self) -> float:
return self.response_times[-1] if self.response_times else 0
class InsuranceLLM:
def __init__(self, config: ModelConfig):
self.config = config
self.llm_ctx: Optional[Llama] = None
self.metrics = PerformanceMetrics()
self.logger = setup_logging()
nvidia_llama3_chatqa_system = (
"This is a chat between a user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. "
"The assistant should also indicate when the answer cannot be found in the context. "
)
enhanced_system_message = (
"You are an expert and experienced from the Insurance domain with extensive insurance knowledge and "
"professional writer skills, especially about insurance policies. "
"Your name is OpenInsuranceLLM, and you were developed by Raj Maharajwala. "
"You are willing to help answer the user's query with a detailed explanation. "
"In your explanation, leverage your deep insurance expertise, such as relevant insurance policies, "
"complex coverage plans, or other pertinent insurance concepts. Use precise insurance terminology while "
"still aiming to make the explanation clear and accessible to a general audience."
)
self.full_system_message = nvidia_llama3_chatqa_system + enhanced_system_message
@contextmanager
def timer(self, description: str):
start_time = time.time()
yield
elapsed_time = time.time() - start_time
self.logger.info(f"{description}: {elapsed_time:.2f}s")
def download_model(self) -> str:
try:
with console.status("[bold green]Downloading model..."):
model_path = hf_hub_download(
self.config.model_name,
filename=self.config.model_file,
local_dir=os.path.join(os.getcwd(), 'gguf_dir')
)
self.logger.info(f"Model downloaded successfully to {model_path}")
return model_path
except Exception as e:
self.logger.error(f"Error downloading model: {str(e)}")
raise
def load_model(self) -> None:
try:
# self.check_metal_support()
quantized_path = os.path.join(os.getcwd(), "gguf_dir")
directory = Path(quantized_path)
try:
model_path = str(list(directory.glob(self.config.model_file))[0])
except IndexError:
model_path = self.download_model()
with console.status("[bold green]Loading model..."):
self.llm_ctx = Llama(
model_path=model_path,
n_gpu_layers=self.config.n_gpu_layers,
n_ctx=self.config.n_ctx,
n_batch=self.config.n_batch,
num_beams=self.config.num_beams,
verbose=self.config.verbose,
use_mlock=self.config.use_mlock,
use_mmap=self.config.use_mmap,
offload_kqv=self.config.offload_kqv
)
self.logger.info("Model loaded successfully")
except Exception as e:
self.logger.error(f"Error loading model: {str(e)}")
raise
def get_prompt(self, question: str, context: str = "") -> str:
if context:
return (
f"System: {self.full_system_message}\n\n"
f"User: Context: {context}\nQuestion: {question}\n\n"
"Assistant:"
)
return (
f"System: {self.full_system_message}\n\n"
f"User: Question: {question}\n\n"
"Assistant:"
)
def generate_response(self, prompt: str) -> Dict[str, Any]:
if not self.llm_ctx:
raise RuntimeError("Model not loaded. Call load_model() first.")
try:
response = {"text": "", "tokens": 0}
# Print the initial prompt
# print("Assistant: ", end="", flush=True)
console.print("\n[bold cyan]Assistant: [/bold cyan]", end="")
# Initialize complete response
complete_response = ""
for chunk in self.llm_ctx.create_completion(
prompt,
max_tokens=self.config.max_tokens,
top_k=self.config.top_k,
top_p=self.config.top_p,
temperature=self.config.temperature,
repeat_penalty=self.config.repeat_penalty,
stream=True
):
text_chunk = chunk["choices"][0]["text"]
response["text"] += text_chunk
response["tokens"] += 1
complete_response += text_chunk
print(text_chunk, end="", flush=True)
print()
return response
except RuntimeError as e:
if "llama_decode returned -3" in str(e):
self.logger.error("Memory allocation failed. Try reducing context window or batch size")
raise
def run_inference_loop(self):
try:
self.load_model()
console.print("\n[bold green]Welcome to Open-Insurance-LLM![/bold green]")
console.print("Enter your questions (type '/bye', 'exit', or 'quit' to end the session)\n")
console.print("Optional: You can provide context by typing 'context:' followed by your context, then 'question:' followed by your question\n")
memory_used = psutil.Process().memory_info().rss / 1024 / 1024
console.print(f"[dim]Memory usage: {memory_used:.2f} MB[/dim]")
while True:
try:
user_input = console.input("[bold cyan]User:[/bold cyan] ").strip()
if user_input.lower() in ["exit", "/bye", "quit"]:
console.print(f"[dim]Total tokens uptill now: {self.metrics.tokens}[/dim]")
console.print(f"[dim]Total Session Time: {self.metrics.elapsed_time:.2}[/dim]")
console.print("\n[bold green]Thank you for using OpenInsuranceLLM![/bold green]")
break
context = ""
question = user_input
if "context:" in user_input.lower() and "question:" in user_input.lower():
parts = user_input.split("question:", 1)
context = parts[0].replace("context:", "").strip()
question = parts[1].strip()
prompt = self.get_prompt(question, context)
self.metrics.reset_timer()
response = self.generate_response(prompt)
# Update metrics after generation
self.metrics.update(response["tokens"])
# Print metrics
console.print(f"[dim]Average tokens/sec: {response['tokens']/(self.metrics.last_response_time if self.metrics.last_response_time!=0 else 1):.2f} ||[/dim]",
f"[dim]Tokens generated: {response['tokens']} ||[/dim]",
f"[dim]Response time: {self.metrics.last_response_time:.2f}s[/dim]", end="\n\n\n")
except KeyboardInterrupt:
console.print("\n[yellow]Input interrupted. Type '/bye', 'exit', or 'quit' to quit.[/yellow]")
continue
except Exception as e:
self.logger.error(f"Error processing input: {str(e)}")
console.print(f"\n[red]Error: {str(e)}[/red]")
continue
except Exception as e:
self.logger.error(f"Fatal error in inference loop: {str(e)}")
console.print(f"\n[red]Fatal error: {str(e)}[/red]")
finally:
if self.llm_ctx:
del self.llm_ctx
def main():
if hasattr(multiprocessing, "set_start_method"):
multiprocessing.set_start_method("spawn", force=True)
try:
config = ModelConfig()
llm = InsuranceLLM(config)
llm.run_inference_loop()
except KeyboardInterrupt:
console.print("\n[yellow]Program interrupted by user[/yellow]")
except Exception as e:
error_msg = f"Application error: {str(e)}"
logging.error(error_msg)
console.print(f"\n[red]{error_msg}[/red]")
if __name__ == "__main__":
main()
python3 inference_open-insurance-llm-gguf.py
Nvidia Llama 3 - ChatQA Paper:
Arxiv : https://arxiv.org/pdf/2401.10225
Use Cases
This model is specifically designed for:
- Insurance policy understanding and explanation
- Claims processing assistance
- Coverage analysis
- Insurance terminology clarification
- Policy comparison and recommendations
- Risk assessment queries
- Insurance compliance questions
Limitations
- The model's knowledge is limited to its training data cutoff
- Should not be used as a replacement for professional insurance advice
- May occasionally generate plausible-sounding but incorrect information
Bias and Ethics
This model should be used with awareness that:
- It may reflect biases present in insurance industry training data
- Output should be verified by insurance professionals for critical decisions
- It should not be used as the sole basis for insurance decisions
- The model's responses should be treated as informational, not as legal or professional advice
Citation and Attribution
If you use base model or quantized model in your research or applications, please cite:
@misc{maharajwala2024openinsurance,
author = {Raj Maharajwala},
title = {Open-Insurance-LLM-Llama3-8B-GGUF},
year = {2024},
publisher = {HuggingFace},
linkedin = {https://www.linkedin.com/in/raj6800/},
url = {https://huggingface.co/Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF}
}