Text Generation
Transformers
English
mistral
medical
code
custom_code
Codette / README.md
Raiff1982's picture
Update README.md
7c69885 verified
---
license: mit
language:
- en
metrics:
- bleurt
- bleu
- chrf
datasets:
- Raiff1982/coredata
- Raiff1982/pineco
base_model:
- tiiuae/falcon-40b
- mistralai/Mistral-7B-v0.3
tags:
- medical
- code
- text-generation
- transformers
pipeline_tag: text-generation
library_name: transformers
---
# Codette - Falcon & Mistral Merged Model
## 🧠 Overview
**Codette** is an advanced AI assistant designed to support users across cognitive, creative, and analytical tasks.
This model merges **Falcon-40B** and **Mistral-7B** to deliver high performance in text generation, medical diagnostics, and code reasoning.
---
## ⚑ Features
- βœ… Merges Falcon-40B & Mistral-7B for enhanced capabilities
- βœ… Supports multi-modal text generation, medical analysis, and code synthesis
- βœ… Fine-tuned on domain-specific datasets (`Raiff1982/coredata`, `Raiff1982/pineco`)
- βœ… Optimized for research, enterprise AI, and advanced reasoning
---
## πŸ“‚ Model Details
- **Base Models:** Falcon-40B, Mistral-7B-v0.3
- **Architecture:** Transformer-based language model
- **Use Cases:** Text generation, code assistance, research, medical insights
- **Training Datasets:**
- `Raiff1982/coredata`: medical and reasoning-focused samples
- `Raiff1982/pineco`: mixed domain creative + technical prompts
---
## πŸ“– Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Raiff1982/Codette"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
prompt = "How can AI improve medical diagnostics?"
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, max_length=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))