Min-Li's picture
Update README.md
a684699 verified
---
license: other
license_name: skywork-community-license
license_link: >-
https://github.com/SkyworkAI/Skywork-Reward/blob/main/misc/Skywork%20Community%20License.pdf
datasets:
- nvidia/HelpSteer2
language:
- en
metrics:
- accuracy
base_model:
- Skywork/Skywork-Reward-Llama-3.1-8B-v0.2
library_name: transformers
---
# Interpreting Language Model Preferences Through the Lens of Decision Trees
+ **Author** [Min Li](https://min-li.github.io/)
+ **Blog**: https://rlhflow.github.io/posts/2025-01-22-decision-tree-reward-model/
+ **Models**:
+ [**Decision-Tree-Reward-Gemma-2-27B**](https://huggingface.co/RLHFlow/Decision-Tree-Reward-Gemma-2-27B)
+ [**Decision-Tree-Reward-Llama-3.1-8B**](https://huggingface.co/RLHFlow/Decision-Tree-Reward-Llama-3.1-8B)
+ **Code Repository:** https://github.com/RLHFlow/RLHF-Reward-Modeling/tree/main/decision_tree
+ **Tech Report**: To release soon
## RewardBench Leaderboard (Jan 2025)
Rank | Model | Base Model | Method | Overall Score | Chat | Chat Hard | Safety | Reasoning |
|:------|:------|:-----------|:-------|:--------------|:---------|:----------|:---------|:----------|
1 | [**Decision-Tree-Reward-Gemma-2-27B**](https://huggingface.co/RLHFlow/Decision-Tree-Reward-Gemma-2-27B) | Gemma-2-27B | Decision Tree | **95.4** | 96.9 | **91.4** | 93.9 | **99.2** |
2 | INF-QRM-Llama3.1-70B | Llama-3.1-70B | Sequence Classifier | 95.1 | 96.6 | 91.0 | 93.6 | 99.1 |
3 | [**Decision-Tree-Reward-Llama-3.1-8B**](https://huggingface.co/RLHFlow/Decision-Tree-Reward-Llama-3.1-8B) | Llama-3.1-8B | Decision Tree | 94.5 | 96.6 | 89.5 | 93.2 | 98.6 |
4 | QRM-Gemma-2-27B | Gemma-2-27B | Sequence Classifier | 94.4 | 96.6 | 90.1 | 92.7 | 98.3 |
5 | Skywork-Reward-Gemma-2-27B-v0.2 | Gemma-2-27B | Sequence Classifier | 94.3 | 96.1 | 89.9 | 93.0 | 98.1 |
6 | Llama-3.1-Nemotron-70B-Reward | Llama-3.1-70B | Custom Classifier | 94.1 | 97.5 | 85.7 | **95.1** | 98.1 |
7 | Skywork-Reward-Gemma-2-27B | Gemma-2-27B | Sequence Classifier | 93.8 | 95.8 | **91.4** | 91.9 | 96.1 |
8 | TextEval-Llama3.1-70B | Llama-3.1-70B | Generative | 93.5 | 94.1 | 90.1 | 93.2 | 96.4 |
9 | MetaMetrics-RM-v1.0 | - | Custom Classifier | 93.4 | **98.3** | 86.4 | 90.8 | 98.2 |
10 | Skywork-Critic-Llama-3.1-70B | Llama-3.1-70B | Generative | 93.3 | 96.6 | 87.9 | 93.1 | 95.5 |
11 | QRM-Llama3.1-8B-v2 | Llama-3.1-8B | Sequence Classifier | 93.1 | 96.4 | 86.8 | 92.6 | 96.8 |
12 | Skywork-Reward-Llama-3.1-8B-v0.2 | Llama-3.1-8B | Sequence Classifier | 93.1 | 94.7 | 88.4 | 92.7 | 96.7 |
## Usage Code
Before using the model, ensure you have the following dependencies installed:
- `transformers==4.45.2`
- `torch>=2.5.0`
- `flash-attn>=2.6.3`
Note: This code requires a GPU with NVIDIA Ampere architecture or newer.
```python
from transformers import AutoModelForSequenceClassification
import torch
from transformers import AutoTokenizer
model_name = "Decision-Tree-Reward-Llama-3.1-8B" # Another choice is "Decision-Tree-Reward-Gemma-2-27B"
repo_id = f"RLHFlow/{model_name}"
device = "cuda"
# Initialize the model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained(repo_id, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map=device)
tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
# Load the decision tree
model.load_decision_tree(repo_id, filename="decision_tree.pkl")
# Prompt and response pairs
prompt = "Jane has 12 apples. She gives 4 apples to her friend Mark, then buys 1 more apple, and finally splits all her apples equally among herself and her 2 siblings. How many apples does each person get?"
response1 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among herself and her 2 siblings (3 people in total). 9 ÷ 3 = 3 apples each. Each person gets 3 apples."
response2 = "1. Jane starts with 12 apples and gives 4 to Mark. 12 - 4 = 8. Jane now has 8 apples.\n2. Jane buys 1 more apple. 8 + 1 = 9. Jane now has 9 apples.\n3. Jane splits the 9 apples equally among her 2 siblings (2 people in total). 9 ÷ 2 = 4.5 apples each. Each person gets 4 apples."
# Compare the two responses
output = model.compare(prompt, response1, response2, tokenizer, device)
print("Response 1 rewards")
print(dict(zip(output["attributes"], output["rewards"][0])))
# {'helpfulness': 3.9603815, 'correctness': 3.9727726, 'coherence': 3.8582935, 'complexity': 0.9909791, 'verbosity': 1.4901903}
print("Response 2 rewards")
print(dict(zip(output["attributes"], output["rewards"][1])))
# {'helpfulness': 2.1698856, 'correctness': 2.2035594, 'coherence': 3.2032843, 'complexity': 0.8786768, 'verbosity': 1.4569137}
print("Model preference")
print(output["preference"])
# 0
```
## License
**Note**: This model is finetuned from a Skywork model under the following license agreement:
The community usage of Skywork model requires [Skywork Community License](https://github.com/SkyworkAI/Skywork-Reward/blob/main/misc/Skywork%20Community%20License.pdf). The Skywork model supports commercial use. If you plan to use the Skywork model or its derivatives for commercial purposes, you must abide by terms and conditions within [Skywork Community License](https://github.com/SkyworkAI/Skywork-Reward/blob/main/misc/Skywork%20Community%20License.pdf).
## To-Do
+ [ ] Reward Model Usage code
+ [ ] Architecture diagram