File size: 23,137 Bytes
532ee9f
 
 
 
 
 
 
 
 
 
 
 
169a2f6
 
 
0fdb488
169a2f6
 
 
 
9783357
169a2f6
 
 
 
097b63b
 
 
 
 
 
 
169a2f6
 
097b63b
169a2f6
 
 
 
097b63b
 
 
 
9783357
097b63b
169a2f6
 
 
 
9783357
169a2f6
097b63b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c72a6
169a2f6
 
097b63b
169a2f6
 
 
 
 
097b63b
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
097b63b
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097b63b
 
169a2f6
097b63b
169a2f6
 
 
 
 
 
 
 
097b63b
169a2f6
 
097b63b
 
 
 
 
 
 
 
 
169a2f6
 
 
 
 
 
 
097b63b
 
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
097b63b
 
 
169a2f6
 
 
097b63b
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097b63b
 
 
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097b63b
 
169a2f6
 
 
 
097b63b
169a2f6
 
 
 
097b63b
 
 
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097b63b
 
 
 
 
169a2f6
 
 
 
 
 
 
097b63b
 
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097b63b
 
169a2f6
 
 
 
097b63b
 
 
 
169a2f6
 
 
 
 
 
097b63b
 
 
 
 
169a2f6
 
 
 
 
 
 
097b63b
 
 
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2c39cd
169a2f6
 
 
 
097b63b
 
 
169a2f6
 
 
 
097b63b
 
8079267
169a2f6
 
 
097b63b
 
169a2f6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
---
language:
- zh
- en
tags:
- qwen
pipeline_tag: text-generation
inference: false
---

# Qwen-VL-Chat

<br>

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo.jpg" width="400"/>
<p>
<br>

<p align="center">
        Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>&nbsp | Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>&nbsp | &nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md">Report</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/9bjvspyu">Discord</a>

</p>
<br>

**Qwen-VL** 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型的特点包括:
- **强大的性能**:在四大类多模态任务的标准英文测评中(Zero-shot Caption/VQA/DocVQA/Grounding)上,均取得同等通用模型大小下最好效果;
- **多语言对话模型**:天然支持多语言对话,端到端支持图片里中英双语的长文本识别;
- **多图交错对话**:支持多图输入和比较,指定图片问答,多图文学创作等;
- **首个支持中文开放域定位的通用模型**:通过中文开放域语言表达进行检测框标注;
- **细粒度识别和理解**:相比于目前其它开源LVLM使用的224分辨率,Qwen-VL是首个开源的448分辨率的LVLM模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。

**Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
- **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
- **Multi-lingual LVLM supporting text recognization**: Qwen-VL naturally supports multi-lingual conversation, and it promotes end-to-end recognition of Chinese and English bi-lingual text in images.
- **Multi-image interleaved conversations**: This feature allows for the input and comparison of multiple images, as well as the ability to specify questions related to the images and engage in multi-image storytelling.
- **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
- **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.

目前,我们提供了 Qwen-VL 系列的两个模型:
- Qwen-VL: Qwen-VL 以 Qwen-7B 的预训练模型作为语言模型的初始化,并以 [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) 作为视觉编码器的初始化,中间加入单层随机初始化的 cross-attention,经过约1.5B的图文数据训练得到。最终图像输入分辨率为448。
- Qwen-VL-Chat: 在 Qwen-VL 的基础上,我们使用对齐机制打造了基于大语言模型的视觉AI助手Qwen-VL-Chat,其训练数据涵盖了 QWen-7B 的纯文本 SFT 数据、开源 LVLM 的 SFT 数据、数据合成和人工标注的图文对齐数据。

如果想了解更多关于模型的信息,请点击[链接](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md)查看我们的技术备忘录。

We release two models of the Qwen-VL series:
- Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data. The final image input resolution is 448.
- Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.

For more details about Qwen-VL, please refer to our [technical memo](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md).

## 评测

我们从两个角度评测了两个模型的能力:
1.**英文标准 Benchmark** 上评测模型的基础任务能力。目前评测了四大类多模态任务:
    - Zero-shot Caption: 评测模型在未见过数据集上的零样本图片描述能力;
    - General VQA: 评测模型的通用问答能力,例如判断题、颜色、个数、类目等问答能力;
    - Text-based VQA:评测模型对于图片中文字相关的识别/问答能力,例如文档问答、图表问答、文字问答等;
    - Referring Expression Compression:评测模型给定物体描述画检测框的能力;

2. **试金石 (TouchStone)**:为了评测模型整体的图文对话能力和人类对齐水平。我们为此构建了一个基于 GPT4 打分来评测 LVLM 模型的 Benchmark:TouchStone。在 TouchStone-v0.1 中:
    - 评测基准总计涵盖 300+张图片、800+道题目、27个类别。包括基础属性问答、人物地标问答、影视作品问答、视觉推理、反事实推理、诗歌创作、故事写作,商品比较、图片解题等**尽可能广泛的类别**    - 为了弥补目前 GPT4 无法直接读取图片的缺陷,我们给所有的带评测图片提供了**人工标注的充分详细描述**,并且将图片的详细描述、问题和模型的输出结果一起交给 GPT4 打分。
    - 评测同时包含英文版本和中文版本。
  
评测结果如下:

We evaluated the model's ability from two perspectives:
1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
   - Zero-shot Caption: Evaluate model's zero-shot image captioning ability on unseen datasets;
   - General VQA: Evaluate the general question-answering ability of pictures, such as the judgment, color, number, category, etc;
   - Text-based VQA: Evaluate the model's ability to recognize text in pictures, such as document QA, chart QA, etc;
   - Referring Expression Comprehension: Evaluate the ability to localize a target object in an image described by a referring expression.

2. **TouchStone**: To evaluate the overall text-image dialogue capability and alignment level with humans, we have constructed a benchmark called TouchStone, which is based on scoring with GPT4 to evaluate the LVLM model.
   - The TouchStone benchmark covers a total of 300+ images, 800+ questions, and 27 categories. Such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc;
   - In order to break the current limitation of GPT4 in terms of direct image input, TouchStone provides fine-grained image annotations by human labeling. These detailed annotations, along with the questions and the model's output, are then presented to GPT4 for scoring.
   - The benchmark includes both English and Chinese versions.

The results of the evaluation are as follows:

Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a more comprehensive coverage in terms of capability range.

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/>
<p>

### Zero-shot Captioning & General VQA
<table>
<thead>
  <tr>
    <th rowspan="2">Model type</th>
    <th rowspan="2">Model</th>
    <th colspan="2">Zero-shot Captioning</th>
    <th colspan="5">General VQA</th>
  </tr>
  <tr>
    <th>NoCaps</th>
    <th>Flickr30K</th>
    <th>VQAv2<sup>dev</sup></th>
    <th>OK-VQA</th>
    <th>GQA</th>
    <th>SciQA-Img<br>(0-shot)</th>
    <th>VizWiz<br>(0-shot)</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td rowspan="10">Generalist<br>Models</td>
    <td>Flamingo-9B</td>
    <td>-</td>
    <td>61.5</td>
    <td>51.8</td>
    <td>44.7</td>
    <td>-</td>
    <td>-</td>
    <td>28.8</td>
  </tr>
  <tr>
    <td>Flamingo-80B</td>
    <td>-</td>
    <td>67.2</td>
    <td>56.3</td>
    <td>50.6</td>
    <td>-</td>
    <td>-</td>
    <td>31.6</td>
  </tr>
  <tr>
    <td>Unified-IO-XL</td>
    <td>100.0</td>
    <td>-</td>
    <td>77.9</td>
    <td>54.0</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>Kosmos-1</td>
    <td>-</td>
    <td>67.1</td>
    <td>51.0</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>29.2</td>
  </tr>
  <tr>
    <td>Kosmos-2</td>
    <td>-</td>
    <td>66.7</td>
    <td>45.6</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>BLIP-2 (Vicuna-13B)</td>
    <td>103.9</td>
    <td>71.6</td>
    <td>65.0</td>
    <td>45.9</td>
    <td>32.3</td>
    <td>61.0</td>
    <td>19.6</td>
  </tr>
  <tr>
    <td>InstructBLIP (Vicuna-13B)</td>
    <td><strong>121.9</strong></td>
    <td>82.8</td>
    <td>-</td>
    <td>-</td>
    <td>49.5</td>
    <td>63.1</td>
    <td>33.4</td>
  </tr>
  <tr>
    <td>Shikra (Vicuna-13B)</td>
    <td>-</td>
    <td>73.9</td>
    <td>77.36</td>
    <td>47.16</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td><strong>Qwen-VL (Qwen-7B)</strong></td>
    <td>121.4</td>
    <td><b>85.8</b></td>
    <td><b>78.8</b></td>
    <td><b>58.6</b></td>
    <td><b>59.3</b></td>
    <td>67.1</td>
    <td>35.2</td>
  </tr>
  <!-- <tr>
    <td>Qwen-VL (4-shot)</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>63.6</td>
    <td>-</td>
    <td>-</td>
    <td>39.1</td>
  </tr> -->
  <tr>
    <td>Qwen-VL-Chat</td>
    <td>120.2</td>
    <td>81.0</td>
    <td>78.2</td>
    <td>56.6</td>
    <td>57.5</td>
    <td><b>68.2</b></td>
    <td><b>38.9</b></td>
  </tr>
  <!-- <tr>
    <td>Qwen-VL-Chat (4-shot)</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>60.6</td>
    <td>-</td>
    <td>-</td>
    <td>44.45</td>
  </tr> -->
  <tr>
    <td>Previous SOTA<br>(Per Task Fine-tuning)</td>
    <td>-</td>
    <td>127.0<br>(PALI-17B)</td>
    <td>84.5<br>(InstructBLIP<br>-FlanT5-XL)</td>
    <td>86.1<br>(PALI-X<br>-55B)</td>
    <td>66.1<br>(PALI-X<br>-55B)</td>
    <td>72.1<br>(CFR)</td>
    <td>92.53<br>(LLaVa+<br>GPT-4)</td>
    <td>70.9<br>(PALI-X<br>-55B)</td>
  </tr>
</tbody>
</table>

- 在 Zero-shot Caption 中,Qwen-VL 在 Flickr30K 数据集上取得了 **SOTA** 的结果,并在 Nocaps 数据集上取得了和 InstructBlip 可竞争的结果。
- 在 General VQA 中,Qwen-VL 取得了 LVLM 模型同等量级和设定下 **SOTA** 的结果。

- For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
- For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.

### Text-oriented VQA (focuse on text understanding capabilities in images)

<table>
<thead>
  <tr>
    <th>Model type</th>
    <th>Model</th>
    <th>TextVQA</th>
    <th>DocVQA</th>
    <th>ChartQA</th>
    <th>AI2D</th>
    <th>OCR-VQA</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td rowspan="5">Generalist Models</td>
    <td>BLIP-2 (Vicuna-13B)</td>
    <td>42.4</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>InstructBLIP (Vicuna-13B)</td>
    <td>50.7</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>mPLUG-DocOwl (LLaMA-7B)</td>
    <td>52.6</td>
    <td>62.2</td>
    <td>57.4</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>Pic2Struct-Large (1.3B)</td>
    <td>-</td>
    <td><b>76.6</b></td>
    <td>58.6</td>
    <td>42.1</td>
    <td>71.3</td>
  </tr>
  <tr>
    <td>Qwen-VL (Qwen-7B)</td>
    <td><b>63.8</b></td>
    <td>65.1</td>
    <td><b>65.7</b></td>
    <td><b>62.3</b></td>
    <td><b>75.7</b></td>
  </tr>
  <tr>
    <td>Specialist SOTAs<br>(Specialist/Finetuned)</td>
    <td>PALI-X-55B (Single-task FT)<br>(Without OCR Pipeline)</td>
    <td>71.44</td>
    <td>80.0</td>
    <td>70.0</td>
    <td>81.2</td>
    <td>75.0</td>
  </tr>
</tbody>
</table>

- 在文字相关的识别/问答评测上,取得了当前规模下通用 LVLM 达到的最好结果。
- 分辨率对上述某几个评测非常重要,大部分 224 分辨率的开源 LVLM 模型无法完成以上评测,或只能通过切图的方式解决。Qwen-VL 将分辨率提升到 448,可以直接以端到端的方式进行以上评测。Qwen-VL 在很多任务上甚至超过了 1024 分辨率的 Pic2Struct-Large 模型。

- In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
- Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.

### Referring Expression Comprehension
<table>
<thead>
  <tr>
    <th rowspan="2">Model type</th>
    <th rowspan="2">Model</th>
    <th colspan="3">RefCOCO</th>
    <th colspan="3">RefCOCO+</th>
    <th colspan="2">RefCOCOg</th>
    <th>GRIT</th>
  </tr>
  <tr>
    <th>val</th>
    <th>test-A</th>
    <th>test-B</th>
    <th>val</th>
    <th>test-A</th>
    <th>test-B</th>
    <th>val-u</th>
    <th>test-u</th>
    <th>refexp</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td rowspan="8">Generalist Models</td>
    <td>GPV-2</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>51.50</td>
  </tr>
  <tr>
    <td>OFA-L*</td>
    <td>79.96</td>
    <td>83.67</td>
    <td>76.39</td>
    <td>68.29</td>
    <td>76.00</td>
    <td>61.75</td>
    <td>67.57</td>
    <td>67.58</td>
    <td>61.70</td>
  </tr>
  <tr>
    <td>Unified-IO</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td><b>78.61</b></td>
  </tr>
  <tr>
    <td>VisionLLM-H</td>
    <td></td>
    <td>86.70</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>Shikra-7B</td>
    <td>87.01</td>
    <td>90.61</td>
    <td>80.24 </td>
    <td>81.60</td>
    <td>87.36</td>
    <td>72.12</td>
    <td>82.27</td>
    <td>82.19</td>
    <td>69.34</td>
  </tr>
  <tr>
    <td>Shikra-13B</td>
    <td>87.83 </td>
    <td>91.11</td>
    <td>81.81</td>
    <td>82.89</td>
    <td>87.79</td>
    <td>74.41</td>
    <td>82.64</td>
    <td>83.16</td>
    <td>69.03</td>
  </tr>
  <tr>
    <td>Qwen-VL-7B</td>
    <td><b>89.36</b></td>
    <td>92.26</td>
    <td><b>85.34</b></td>
    <td><b>83.12</b></td>
    <td>88.25</td>
    <td><b>77.21</b></td>
    <td>85.58</td>
    <td>85.48</td>
    <td>78.22</td>
  </tr>
  <tr>
    <td>Qwen-VL-7B-Chat</td>
    <td>88.55</td>
    <td><b>92.27</b></td>
    <td>84.51</td>
    <td>82.82</td>
    <td><b>88.59</b></td>
    <td>76.79</td>
    <td><b>85.96</b></td>
    <td><b>86.32</b></td>
    <td>-</td>
  <tr>
    <td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
    <td>G-DINO-L</td>
    <td>90.56&nbsp;&nbsp;</td>
    <td>93.19</td>
    <td>88.24</td>
    <td>82.75</td>
    <td>88.95</td>
    <td>75.92</td>
    <td>86.13</td>
    <td>87.02</td>
    <td>-</td>
  </tr>
  <tr>
    <td>UNINEXT-H</td>
    <td>92.64 </td>
    <td>94.33</td>
    <td>91.46</td>
    <td>85.24</td>
    <td>89.63</td>
    <td>79.79</td>
    <td>88.73</td>
    <td>89.37</td>
    <td>-</td>
  </tr>
  <tr>
    <td>ONE-PEACE</td>
    <td>92.58 </td>
    <td>94.18</td>
    <td>89.26</td>
    <td>88.77</td>
    <td>92.21</td>
    <td>83.23</td>
    <td>89.22</td>
    <td>89.27</td>
    <td>-</td>
  </tr>
</tbody>
</table>

- 在定位任务上,Qwen-VL 全面超过 Shikra-13B,取得了目前 Generalist LVLM 模型上在 Refcoco 上的 **SOTA**- Qwen-VL 并没有在任何中文定位数据上训练过,但通过中文 Caption 数据和 英文 Grounding 数据的训练,可以 Zero-shot 泛化出中文 Grounding 能力。

我们提供了以上**所有**评测脚本以供复现我们的实验结果。请阅读 [eval/EVALUATION.md](eval/EVALUATION.md) 了解更多信息。

- Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
- Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.

We provide all of the above evaluation scripts for reproducing our experimental results. Please read [eval/EVALUATION.md](eval/EVALUATION.md) for more information.

### Chat evaluation

TouchStone 是一个基于 GPT4 打分来评测 LVLM 模型的图文对话能力和人类对齐水平的基准。它涵盖了 300+张图片、800+道题目、27个类别,包括基础属性、人物地标、视觉推理、诗歌创作、故事写作、商品比较、图片解题等**尽可能广泛的类别**。关于 TouchStone 的详细介绍,请参考[touchstone/README_CN.md](touchstone/README_CN.md)了解更多信息。

TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.

#### English evaluation

| Model         | Score |
|---------------|-------|
| PandaGPT      | 488.5 |
| MiniGPT4      | 531.7 |
| InstructBLIP  | 552.4 |
| LLaMA-AdapterV2 | 590.1 |
| mPLUG-Owl     | 605.4 |
| LLaVA         | 602.7 |
| Qwen-VL-Chat   | 645.2 |

#### Chinese evaluation

| Model         | Score |
|---------------|-------|
| VisualGLM     | 247.1 |
| Qwen-VL-Chat   | 401.2 |

Qwen-VL-Chat 模型在中英文的对齐评测中均取得当前 LVLM 模型下的最好结果。

Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.

## Requirements

* python 3.8及以上版本
* pytorch 1.12及以上版本,推荐2.0及以上版本
* 建议使用CUDA 11.4及以上(GPU用户需考虑此选项)

* python 3.8 and above
* pytorch 1.12 and above, 2.0 and above are recommended
* CUDA 11.4 and above are recommended (this is for GPU users)

## Quickstart

我们提供简单的示例来说明如何利用 🤗 Transformers 快速使用 Qwen-VL 和 Qwen-VL-Chat。

在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你满足上述要求,然后安装相关的依赖库。

Below, we provide simple examples to show how to use Qwen-VL and Qwen-VL-Chat with 🤗 Transformers.

Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.

```bash
pip install -r requirements.txt
```

接下来你可以开始使用Transformers来使用我们的模型。关于视觉模块的更多用法,请参考[教程](TUTORIAL.md)。

Now you can start with Transformers. More usage aboue vision encoder, please refer to [tutorial](TUTORIAL_zh.md).

#### 🤗 Transformers

To use Qwen-VL-Chat for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)

# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)

# use bf16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cpu", trust_remote_code=True).eval()
# use cuda device
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cuda", trust_remote_code=True).eval()

# Specify hyperparameters for generation
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)

# 1st dialogue turn
query = tokenizer.from_list_format([
    {'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'},
    {'text': '这是什么'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
# 图中是一名年轻女子在沙滩上和她的狗玩耍,狗的品种可能是拉布拉多。她们坐在沙滩上,狗的前腿抬起来,似乎在和人类击掌。两人之间充满了信任和爱。

# 2st dialogue turn
response, history = model.chat(tokenizer, '输出"击掌"的检测框', history=history)
print(response)
# <ref>击掌</ref><box>(517,508),(589,611)</box>
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image:
  image.save('1.jpg')
else:
  print("no box")
```

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo_highfive.jpg" width="500"/>
<p>

## FAQ

如遇到问题,敬请查阅 [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。

If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ.md) and the issues first to search a solution before you launch a new issue.


## License Agreement

研究人员与开发者可使用Qwen-VL和Qwen-VL-Chat或进行二次开发。我们同样允许商业使用,具体细节请查看[LICENSE](https://github.com/QwenLM/Qwen-VL/blob/master/LICENSE)。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。

Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.

## Contact Us

如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen[email protected])联系我们。

If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_[email protected].