Update README
Browse files
README.md
CHANGED
@@ -23,20 +23,47 @@ inference: false
|
|
23 |
</p>
|
24 |
<br>
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
**Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
|
27 |
- **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
|
28 |
-
- **Multi-lingual LVLM
|
29 |
- **Multi-image interleaved conversations**: This feature allows for the input and comparison of multiple images, as well as the ability to specify questions related to the images and engage in multi-image storytelling.
|
30 |
- **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
|
31 |
- **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
We release two models of the Qwen-VL series:
|
34 |
- Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data. The final image input resolution is 448.
|
35 |
- Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.
|
36 |
|
37 |
For more details about Qwen-VL, please refer to our [technical memo](visual_memo.md).
|
38 |
|
39 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
We evaluated the model's ability from two perspectives:
|
42 |
1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
|
@@ -58,13 +85,13 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
58 |
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/>
|
59 |
<p>
|
60 |
|
61 |
-
### Zero-shot
|
62 |
<table>
|
63 |
<thead>
|
64 |
<tr>
|
65 |
<th rowspan="2">Model type</th>
|
66 |
<th rowspan="2">Model</th>
|
67 |
-
<th colspan="2">Zero-shot
|
68 |
<th colspan="5">General VQA</th>
|
69 |
</tr>
|
70 |
<tr>
|
@@ -79,7 +106,7 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
79 |
</thead>
|
80 |
<tbody align="center">
|
81 |
<tr>
|
82 |
-
<td rowspan="
|
83 |
<td>Flamingo-9B</td>
|
84 |
<td>-</td>
|
85 |
<td>61.5</td>
|
@@ -166,10 +193,10 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
166 |
<td><b>78.8</b></td>
|
167 |
<td><b>58.6</b></td>
|
168 |
<td><b>59.3</b></td>
|
169 |
-
<td
|
170 |
-
<td
|
171 |
</tr>
|
172 |
-
<tr>
|
173 |
<td>Qwen-VL (4-shot)</td>
|
174 |
<td>-</td>
|
175 |
<td>-</td>
|
@@ -178,18 +205,18 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
178 |
<td>-</td>
|
179 |
<td>-</td>
|
180 |
<td>39.1</td>
|
181 |
-
</tr>
|
182 |
<tr>
|
183 |
<td>Qwen-VL-Chat</td>
|
184 |
-
<td
|
185 |
-
<td>81.
|
186 |
-
<td
|
187 |
-
<td>56.
|
188 |
-
<td
|
189 |
-
<td>68.
|
190 |
-
<td>
|
191 |
-
</tr>
|
192 |
-
<tr>
|
193 |
<td>Qwen-VL-Chat (4-shot)</td>
|
194 |
<td>-</td>
|
195 |
<td>-</td>
|
@@ -197,8 +224,8 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
197 |
<td>60.6</td>
|
198 |
<td>-</td>
|
199 |
<td>-</td>
|
200 |
-
<td>45
|
201 |
-
</tr>
|
202 |
<tr>
|
203 |
<td>Previous SOTA<br>(Per Task Fine-tuning)</td>
|
204 |
<td>-</td>
|
@@ -213,10 +240,13 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
213 |
</tbody>
|
214 |
</table>
|
215 |
|
|
|
|
|
|
|
216 |
- For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
|
217 |
- For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
|
218 |
|
219 |
-
### Text-
|
220 |
|
221 |
<table>
|
222 |
<thead>
|
@@ -284,6 +314,9 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
284 |
</tbody>
|
285 |
</table>
|
286 |
|
|
|
|
|
|
|
287 |
- In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
|
288 |
- Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
|
289 |
|
@@ -392,22 +425,21 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
392 |
<td><b>83.12</b></td>
|
393 |
<td>88.25</td>
|
394 |
<td><b>77.21</b></td>
|
395 |
-
<td
|
396 |
-
<td
|
397 |
<td>78.22</td>
|
398 |
</tr>
|
399 |
<tr>
|
400 |
<td>Qwen-VL-7B-Chat</td>
|
401 |
-
<td
|
402 |
<td><b>92.27</b></td>
|
403 |
<td>84.51</td>
|
404 |
<td>82.82</td>
|
405 |
<td><b>88.59</b></td>
|
|
|
|
|
|
|
406 |
<td>-</td>
|
407 |
-
<td>-</td>
|
408 |
-
<td>-</td>
|
409 |
-
<td>-</td>
|
410 |
-
</tr>
|
411 |
<tr>
|
412 |
<td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
|
413 |
<td>G-DINO-L</td>
|
@@ -448,6 +480,11 @@ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has
|
|
448 |
</tbody>
|
449 |
</table>
|
450 |
|
|
|
|
|
|
|
|
|
|
|
451 |
- Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
|
452 |
- Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
|
453 |
|
@@ -455,6 +492,8 @@ We provide all of the above evaluation scripts for reproducing our experimental
|
|
455 |
|
456 |
### Chat evaluation
|
457 |
|
|
|
|
|
458 |
TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
|
459 |
|
460 |
#### English evaluation
|
@@ -476,17 +515,27 @@ TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities o
|
|
476 |
| VisualGLM | 247.1 |
|
477 |
| Qwen-VL-Chat | 401.2 |
|
478 |
|
|
|
|
|
479 |
Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
|
480 |
|
481 |
## Requirements
|
482 |
|
|
|
|
|
|
|
|
|
483 |
* python 3.8 and above
|
484 |
* pytorch 1.12 and above, 2.0 and above are recommended
|
485 |
* CUDA 11.4 and above are recommended (this is for GPU users)
|
486 |
|
487 |
## Quickstart
|
488 |
|
489 |
-
|
|
|
|
|
|
|
|
|
490 |
|
491 |
Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
|
492 |
|
@@ -494,7 +543,9 @@ Before running the code, make sure you have setup the environment and installed
|
|
494 |
pip install -r requirements.txt
|
495 |
```
|
496 |
|
497 |
-
|
|
|
|
|
498 |
|
499 |
#### 🤗 Transformers
|
500 |
|
@@ -547,14 +598,20 @@ else:
|
|
547 |
|
548 |
## FAQ
|
549 |
|
550 |
-
|
|
|
|
|
551 |
|
552 |
|
553 |
## License Agreement
|
554 |
|
|
|
|
|
555 |
Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
|
556 |
|
557 |
## Contact Us
|
558 |
|
|
|
|
|
559 |
If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
|
560 |
|
|
|
23 |
</p>
|
24 |
<br>
|
25 |
|
26 |
+
**Qwen-VL** 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型的特点包括:
|
27 |
+
- **强大的性能**:在四大类多模态任务的标准英文测评中(Zero-shot Caption/VQA/DocVQA/Grounding)上,均取得同等通用模型大小下最好效果;
|
28 |
+
- **多语言对话模型**:天然支持多语言对话,端到端支持图片里中英双语的长文本识别;
|
29 |
+
- **多图交错对话**:支持多图输入和比较,指定图片问答,多图文学创作等;
|
30 |
+
- **首个支持中文开放域定位的通用模型**:通过中文开放域语言表达进行检测框标注;
|
31 |
+
- **细粒度识别和理解**:相比于目前其它开源LVLM使用的224分辨率,Qwen-VL是首个开源的448分辨率的LVLM模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。
|
32 |
+
|
33 |
**Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
|
34 |
- **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
|
35 |
+
- **Multi-lingual LVLM supporting text recognization**: Qwen-VL naturally supports multi-lingual conversation, and it promotes end-to-end recognition of Chinese and English bi-lingual text in images.
|
36 |
- **Multi-image interleaved conversations**: This feature allows for the input and comparison of multiple images, as well as the ability to specify questions related to the images and engage in multi-image storytelling.
|
37 |
- **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
|
38 |
- **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.
|
39 |
|
40 |
+
目前,我们提供了 Qwen-VL 系列的两个模型:
|
41 |
+
- Qwen-VL: Qwen-VL 以 Qwen-7B 的预训练模型作为语言模型的初始化,并以 [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) 作为视觉编码器的初始化,中间加入单层随机初始化的 cross-attention,经过约1.5B的图文数据训练得到。最终图像输入分辨率为448。
|
42 |
+
- Qwen-VL-Chat: 在 Qwen-VL 的基础上,我们使用对齐机制打造了基于大语言模型的视觉AI助手Qwen-VL-Chat,其训练数据涵盖了 QWen-7B 的纯文本 SFT 数据、开源 LVLM 的 SFT 数据、数据合成和人工标注的图文对齐数据。
|
43 |
+
|
44 |
+
如果想了解更多关于模型的信息,请点击[链接](visual_memo.md)查看我们的技术备忘录。
|
45 |
+
|
46 |
We release two models of the Qwen-VL series:
|
47 |
- Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data. The final image input resolution is 448.
|
48 |
- Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.
|
49 |
|
50 |
For more details about Qwen-VL, please refer to our [technical memo](visual_memo.md).
|
51 |
|
52 |
+
## 评测
|
53 |
+
|
54 |
+
我们从两个角度评测了两个模型的能力:
|
55 |
+
1. 在**英文标准 Benchmark** 上评测模型的基础任务能力。目前评测了四大类多模态任务:
|
56 |
+
- Zero-shot Caption: 评测模型在未见过数据集上的零样本图片描述能力;
|
57 |
+
- General VQA: 评测模型的通用问答能力,例如判断题、颜色、个数、类目等问答能力;
|
58 |
+
- Text-based VQA:评测模型对于图片中文字相关的识别/问答能力,例如文档问答、图表问答、文字问答等;
|
59 |
+
- Referring Expression Compression:评测模型给定物体描述画检测框的能力;
|
60 |
+
|
61 |
+
2. **试金石 (TouchStone)**:为了评测模型整体的图文对话能力和人类对齐水平。我们为此构建了一个基于 GPT4 打分来评测 LVLM 模型的 Benchmark:TouchStone。在 TouchStone-v0.1 中:
|
62 |
+
- 评测基准总计涵盖 300+张图片、800+道题目、27个类别。包括基础属性问答、人物地标问答、影视作品问答、视觉推理、反事实推理、诗歌创作、故事写作,商品比较、图片解题等**尽可能广泛的类别**。
|
63 |
+
- 为了弥补目前 GPT4 无法直接读取图片的缺陷,我们给所有的带评测图片提供了**人工标注的充分详细描述**,并且将图片的详细描述、问题和模型的输出结果一起交给 GPT4 打分。
|
64 |
+
- 评测同时包含英文版本和中文版本。
|
65 |
+
|
66 |
+
评测结果如下:
|
67 |
|
68 |
We evaluated the model's ability from two perspectives:
|
69 |
1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
|
|
|
85 |
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/>
|
86 |
<p>
|
87 |
|
88 |
+
### Zero-shot Captioning & General VQA
|
89 |
<table>
|
90 |
<thead>
|
91 |
<tr>
|
92 |
<th rowspan="2">Model type</th>
|
93 |
<th rowspan="2">Model</th>
|
94 |
+
<th colspan="2">Zero-shot Captioning</th>
|
95 |
<th colspan="5">General VQA</th>
|
96 |
</tr>
|
97 |
<tr>
|
|
|
106 |
</thead>
|
107 |
<tbody align="center">
|
108 |
<tr>
|
109 |
+
<td rowspan="10">Generalist<br>Models</td>
|
110 |
<td>Flamingo-9B</td>
|
111 |
<td>-</td>
|
112 |
<td>61.5</td>
|
|
|
193 |
<td><b>78.8</b></td>
|
194 |
<td><b>58.6</b></td>
|
195 |
<td><b>59.3</b></td>
|
196 |
+
<td>67.1</td>
|
197 |
+
<td>35.2</td>
|
198 |
</tr>
|
199 |
+
<!-- <tr>
|
200 |
<td>Qwen-VL (4-shot)</td>
|
201 |
<td>-</td>
|
202 |
<td>-</td>
|
|
|
205 |
<td>-</td>
|
206 |
<td>-</td>
|
207 |
<td>39.1</td>
|
208 |
+
</tr> -->
|
209 |
<tr>
|
210 |
<td>Qwen-VL-Chat</td>
|
211 |
+
<td>120.2</td>
|
212 |
+
<td>81.0</td>
|
213 |
+
<td>78.2</td>
|
214 |
+
<td>56.6</td>
|
215 |
+
<td>57.5</td>
|
216 |
+
<td><b>68.2</b></td>
|
217 |
+
<td><b>38.9</b></td>
|
218 |
+
</tr>
|
219 |
+
<!-- <tr>
|
220 |
<td>Qwen-VL-Chat (4-shot)</td>
|
221 |
<td>-</td>
|
222 |
<td>-</td>
|
|
|
224 |
<td>60.6</td>
|
225 |
<td>-</td>
|
226 |
<td>-</td>
|
227 |
+
<td>44.45</td>
|
228 |
+
</tr> -->
|
229 |
<tr>
|
230 |
<td>Previous SOTA<br>(Per Task Fine-tuning)</td>
|
231 |
<td>-</td>
|
|
|
240 |
</tbody>
|
241 |
</table>
|
242 |
|
243 |
+
- 在 Zero-shot Caption 中,Qwen-VL 在 Flickr30K 数据集上取得了 **SOTA** 的结果,并在 Nocaps 数据集上取得了和 InstructBlip 可竞争的结果。
|
244 |
+
- 在 General VQA 中,Qwen-VL 取得了 LVLM 模型同等量级和设定下 **SOTA** 的结果。
|
245 |
+
|
246 |
- For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
|
247 |
- For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
|
248 |
|
249 |
+
### Text-oriented VQA (focuse on text understanding capabilities in images)
|
250 |
|
251 |
<table>
|
252 |
<thead>
|
|
|
314 |
</tbody>
|
315 |
</table>
|
316 |
|
317 |
+
- 在文字相关的识别/问答评测上,取得了当前规模下通用 LVLM 达到的最好结果。
|
318 |
+
- 分辨率对上述某几个评测非常重要,大部分 224 分辨率的开源 LVLM 模型无法完成以上评测,或只能通过切图的方式解决。Qwen-VL 将分辨率提升到 448,可以直接以端到端的方式进行以上评测。Qwen-VL 在很多任务上甚至超过了 1024 分辨率的 Pic2Struct-Large 模型。
|
319 |
+
|
320 |
- In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
|
321 |
- Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
|
322 |
|
|
|
425 |
<td><b>83.12</b></td>
|
426 |
<td>88.25</td>
|
427 |
<td><b>77.21</b></td>
|
428 |
+
<td>85.58</td>
|
429 |
+
<td>85.48</td>
|
430 |
<td>78.22</td>
|
431 |
</tr>
|
432 |
<tr>
|
433 |
<td>Qwen-VL-7B-Chat</td>
|
434 |
+
<td>88.55</td>
|
435 |
<td><b>92.27</b></td>
|
436 |
<td>84.51</td>
|
437 |
<td>82.82</td>
|
438 |
<td><b>88.59</b></td>
|
439 |
+
<td>76.79</td>
|
440 |
+
<td><b>85.96</b></td>
|
441 |
+
<td><b>86.32</b></td>
|
442 |
<td>-</td>
|
|
|
|
|
|
|
|
|
443 |
<tr>
|
444 |
<td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
|
445 |
<td>G-DINO-L</td>
|
|
|
480 |
</tbody>
|
481 |
</table>
|
482 |
|
483 |
+
- 在定位任务上,Qwen-VL 全面超过 Shikra-13B,取得了目前 Generalist LVLM 模型上在 Refcoco 上的 **SOTA**。
|
484 |
+
- Qwen-VL 并没有在任何中文定位数据上训练过,但通过中文 Caption 数据和 英文 Grounding 数据的训练,可以 Zero-shot 泛化出中文 Grounding 能力。
|
485 |
+
|
486 |
+
我们提供了以上**所有**评测脚本以供复现我们的实验结果。请阅读 [eval/EVALUATION.md](eval/EVALUATION.md) 了解更多信息。
|
487 |
+
|
488 |
- Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
|
489 |
- Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
|
490 |
|
|
|
492 |
|
493 |
### Chat evaluation
|
494 |
|
495 |
+
TouchStone 是一个基于 GPT4 打分来评测 LVLM 模型的图文对话能力和人类对齐水平的基准。它涵盖了 300+张图片、800+道题目、27个类别,包括基础属性、人物地标、视觉推理、诗歌创作、故事写作、商品比较、图片解题等**尽可能广泛的类别**。关于 TouchStone 的详细介绍,请参考[touchstone/README_CN.md](touchstone/README_CN.md)了解更多信息。
|
496 |
+
|
497 |
TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
|
498 |
|
499 |
#### English evaluation
|
|
|
515 |
| VisualGLM | 247.1 |
|
516 |
| Qwen-VL-Chat | 401.2 |
|
517 |
|
518 |
+
Qwen-VL-Chat 模型在中英文的对齐评测中均取得当前 LVLM 模型下的最好结果。
|
519 |
+
|
520 |
Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
|
521 |
|
522 |
## Requirements
|
523 |
|
524 |
+
* python 3.8及以上版本
|
525 |
+
* pytorch 1.12及以上版本,推荐2.0及以上版本
|
526 |
+
* 建议使用CUDA 11.4及以上(GPU用户需考虑此选项)
|
527 |
+
|
528 |
* python 3.8 and above
|
529 |
* pytorch 1.12 and above, 2.0 and above are recommended
|
530 |
* CUDA 11.4 and above are recommended (this is for GPU users)
|
531 |
|
532 |
## Quickstart
|
533 |
|
534 |
+
我们提供简单的示例来说明如何利用 🤗 Transformers 快速使用 Qwen-VL 和 Qwen-VL-Chat。
|
535 |
+
|
536 |
+
在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你满足上述要求,然后安装相关的依赖库。
|
537 |
+
|
538 |
+
Below, we provide simple examples to show how to use Qwen-VL and Qwen-VL-Chat with 🤗 Transformers.
|
539 |
|
540 |
Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
|
541 |
|
|
|
543 |
pip install -r requirements.txt
|
544 |
```
|
545 |
|
546 |
+
接下来你可以开始使用Transformers来使用我们的模型。关于视觉模块的更多用法,请参考[教程](TUTORIAL.md)。
|
547 |
+
|
548 |
+
Now you can start with Transformers. More usage aboue vision encoder, please refer to [tutorial](TUTORIAL_zh.md).
|
549 |
|
550 |
#### 🤗 Transformers
|
551 |
|
|
|
598 |
|
599 |
## FAQ
|
600 |
|
601 |
+
如遇到问题,敬请查阅 [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
|
602 |
+
|
603 |
+
If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ.md) and the issues first to search a solution before you launch a new issue.
|
604 |
|
605 |
|
606 |
## License Agreement
|
607 |
|
608 |
+
研究人员与开发者可使用Qwen-VL和Qwen-VL-Chat或进行二次开发。我们同样允许商业使用,具体细节请查看[LICENSE](https://github.com/QwenLM/Qwen-VL/blob/master/LICENSE)。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
|
609 |
+
|
610 |
Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
|
611 |
|
612 |
## Contact Us
|
613 |
|
614 |
+
如果你想给我们的研发团队和产品团队留言,请通过邮件([email protected])联系我们。
|
615 |
+
|
616 |
If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
|
617 |
|