metadata
base_model: Qwen/Qwen2.5-0.5B-Instruct
language:
- en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
- mlc-ai
- MLC-Weight-Conversion
library_name: mlc-llm base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - mlc-llm - web-llm
Qurtana/Qwen2.5-0.5B-Instruct-q3f16_1-MLC
This is the Qwen2.5-0.5B-Instruct model in MLC format q3f16_1
.
The conversion was done using the MLC-Weight-Conversion space.
The model can be used for projects MLC-LLM and WebLLM.
Example Usage
Here are some examples of using this model in MLC LLM. Before running the examples, please install MLC LLM by following the installation documentation.
Chat
In command line, run
mlc_llm chat HF://mlc-ai/Qurtana/Qwen2.5-0.5B-Instruct-q3f16_1-MLC
REST Server
In command line, run
mlc_llm serve HF://mlc-ai/Qurtana/Qwen2.5-0.5B-Instruct-q3f16_1-MLC
Python API
from mlc_llm import MLCEngine
# Create engine
model = "HF://mlc-ai/Qurtana/Qwen2.5-0.5B-Instruct-q3f16_1-MLC"
engine = MLCEngine(model)
# Run chat completion in OpenAI API.
for response in engine.chat.completions.create(
messages=[{"role": "user", "content": "What is the meaning of life?"}],
model=model,
stream=True,
):
for choice in response.choices:
print(choice.delta.content, end="", flush=True)
print("\n")
engine.terminate()
Documentation
For more information on MLC LLM project, please visit our documentation and GitHub repo.