bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0603
- Precision: 0.9344
- Recall: 0.9490
- F1: 0.9416
- Accuracy: 0.9862
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0743 | 1.0 | 1756 | 0.0627 | 0.9144 | 0.9399 | 0.9270 | 0.9829 |
0.0334 | 2.0 | 3512 | 0.0653 | 0.9349 | 0.9467 | 0.9407 | 0.9859 |
0.0249 | 3.0 | 5268 | 0.0603 | 0.9344 | 0.9490 | 0.9416 | 0.9862 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Quanult/bert-finetuned-ner
Base model
google-bert/bert-base-casedDataset used to train Quanult/bert-finetuned-ner
Evaluation results
- Precision on conll2003validation set self-reported0.934
- Recall on conll2003validation set self-reported0.949
- F1 on conll2003validation set self-reported0.942
- Accuracy on conll2003validation set self-reported0.986